32 research outputs found

    LDHA is enriched in human islet alpha cells and upregulated in type 2 diabetes

    Get PDF
    The lactate dehydrogenase isoform A (LDHA) is a key metabolic enzyme that preferentially catalyzes the conversion of pyruvate to lactate. Whereas LDHA is highly expressed in many tissues, its expression is turned off in the differentiated adult ÎČ-cell within the pancreatic islets. The repression of LDHA under normal physiological condition and its inappropriate upregulation under a diabetogenic environment is well-documented in rodent islets/ÎČ-cells but little is known about LDHA expression in human islet cells and whether its abundance is altered under diabetic conditions. Analysis of public single-cell RNA-seq (sc-RNA seq) data as well as cell type-specific immunolabeling of human pancreatic islets showed that LDHA was mainly localized in human α-cells while it is expressed at a very low level in ÎČ-cells. Furthermore, LDHA, both at mRNA and protein, as well as lactate production is upregulated in human pancreatic islets exposed to chronic high glucose treatment. Microscopic analysis of stressed human islets and autopsy pancreases from individuals with type 2 diabetes (T2D) showed LDHA upregulation mainly in human α-cells. Pharmacological inhibition of LDHA in isolated human islets enhanced insulin secretion under physiological conditions but did not significantly correct the deregulated secretion of insulin or glucagon under diabetic conditions

    SGLT2 is not expressed in pancreatic α- and ÎČ-cells, and its inhibition does not directly affect glucagon and insulin secretion in rodents and humans.

    Get PDF
    OBJECTIVE: Sodium-glucose cotransporter 2 (SGLT2) inhibitors (SGLT2i), or gliflozins, are anti-diabetic drugs that lower glycemia by promoting glucosuria, but they also stimulate endogenous glucose and ketone body production. The likely causes of these metabolic responses are increased blood glucagon levels, and decreased blood insulin levels, but the mechanisms involved are hotly debated. This study verified whether or not SGLT2i affect glucagon and insulin secretion by a direct action on islet cells in three species, using multiple approaches. METHODS: We tested the in vivo effects of two selective SGLT2i (dapagliflozin, empagliflozin) and a SGLT1/2i (sotagliflozin) on various biological parameters (glucosuria, glycemia, glucagonemia, insulinemia) in mice. mRNA expression of SGLT2 and other glucose transporters was assessed in rat, mouse, and human FACS-purified α- and ÎČ-cells, and by analysis of two human islet cell transcriptomic datasets. Immunodetection of SGLT2 in pancreatic tissues was performed with a validated antibody. The effects of dapagliflozin, empagliflozin, and sotagliflozin on glucagon and insulin secretion were assessed using isolated rat, mouse and human islets and the in situ perfused mouse pancreas. Finally, we tested the long-term effect of SGLT2i on glucagon gene expression. RESULTS: SGLT2 inhibition in mice increased the plasma glucagon/insulin ratio in the fasted state, an effect correlated with a decline in glycemia. Gene expression analyses and immunodetections showed no SGLT2 mRNA or protein expression in rodent and human islet cells, but moderate SGLT1 mRNA expression in human α-cells. However, functional experiments on rat, mouse, and human (29 donors) islets and the in situ perfused mouse pancreas did not identify any direct effect of dapagliflozin, empagliflozin or sotagliflozin on glucagon and insulin secretion. SGLT2i did not affect glucagon gene expression in rat and human islets. CONCLUSIONS: The data indicate that the SGLT2i-induced increase of the plasma glucagon/insulin ratio in vivo does not result from a direct action of the gliflozins on islet cells

    Impact d'un régime riche en saccharose sur la sarcopénie chez le rat ùgé ; Conséqences métaboliques au niveau hépatique et cérébral. Effets préventifs d'un mélange de micronutriments. Spécialité

    No full text
    With aging, several alterations occur, including a loss of muscle mass and function, called sarcopenia. Many factors are responsible for the development of sarcopenia, but some factors as inflammation, oxidative stress and insulin resistance, which have many deleterious effects during aging, can reduce meal-induced stimulation of muscle protein synthesis which was shown to partly explain age-related muscle mass loss. Those factors can be induced by a diet rich in added sugar, characteristic of current dietary habits. Although this kind of diet could accelerate aging features, little is known about combined effect of aging and high sugar diet, particularly on sarcopenia. Thus, the purpose of this work was to determine whether high chronic intake of added sugars could accelerate sarcopenia. We also interested in the combined effect of added sugars and aging on other exposed tissues: liver and brain. Finally, we assessed the preventive effects of a micronutrient supplementation both in vivo and in vitro.In order to do that, for 5 months, 16 month old rats were starch fed or sucrose fed (62% sucrose), with or without micronutrients supplementation (rutin, vitamin A, vitamin E, vitamin D, selenium and zinc). Additionally, an adult control group of 8 month old rats was included. Besides, anti-inflammatory effects of micronutrients were tested in vitro.We showed that high sucrose diet accelerated age-related muscle mass loss by impairing postprandial protein synthesis, likely through decreased insulin sensitivity since inflammation and oxidative stress were only slightly affected by high sucrose diet. This diet also resulted in fat mass gain and increased plasma and liver triglycerides, by modulating the activity of enzymes involved in liver lipid metabolism. In the brain, high sucrose consumption led to decreased protein concentration independently of protein synthesis alteration. Micronutrients supplementation only partially reversed high sucrose diet effects: it did not act on lean body mass but prevented fat mass gain, by inhibiting hepatic lipogenesis. It also restored brain protein synthesis, which was reduced by aging. In vitro, it reduced experimentally induced inflammation.Thus, this work showed that a high sucrose diet accelerates sarcopenia in old rats but also induces liver and brain alterations. Prevention by micronutrients remained limited.Au cours du vieillissement, l’organisme subit de nombreuses altĂ©rations, dont une perte de masse et de fonction musculaire appelĂ©e sarcopĂ©nie. Ses causes sont multifactorielles. Elle est partiellement liĂ©e Ă  une altĂ©ration de la stimulation de la synthĂšse protĂ©ique musculaire post-prandiale, et certains facteurs tels que le stress oxydant, l’inflammation et la rĂ©sistance Ă  l’insuline, responsables de nombreux dysfonctionnements mĂ©taboliques, accĂ©lĂšrent ce phĂ©nomĂšne. Or, ces dĂ©rĂ©gulations peuvent ĂȘtre induites par une alimentation trop riche en sucres ajoutĂ©s, caractĂ©ristique des habitudes alimentaires actuelles et qui pourrait donc accĂ©lĂ©rer le vieillissement. Pourtant, Ă  ce jour, peu d'Ă©tudes ont Ă©tudiĂ© les effets combinĂ©s du vieillissement et d'un rĂ©gime riche en sucres ajoutĂ©s, et Ă  notre connaissance, aucune ne s’est intĂ©ressĂ©e Ă  la sarcopĂ©nie. Ainsi, notre objectif au cours de cette thĂšse a Ă©tĂ© de dĂ©terminer si un rĂ©gime riche en sucres ajoutĂ©s Ă©tait capable d'accĂ©lĂ©rer la sarcopĂ©nie. Il Ă©tait Ă©galement intĂ©ressant d'Ă©tudier les effets combinĂ©s du vieillissement et de ce rĂ©gime sur d'autres tissus qui semblent particuliĂšrement exposĂ©s, le foie, et le cerveau. Enfin, nous avons Ă©galement voulu analyser les effets prĂ©ventifs d'un mĂ©lange de micronutriments Ă  la fois in vivo et in vitro. Pour cela, des rats ĂągĂ©s de 16 mois ont Ă©tĂ© nourris durant 5 mois avec un rĂ©gime contrĂŽle ou un rĂ©gime composĂ© Ă  62% de saccharose, supplĂ©mentĂ© ou non en rutine, vitamine A, vitamine E, vitamine D, zinc, et sĂ©lĂ©nium. En outre, nous avons Ă©galement inclut un groupe de tĂ©moins adultes (8 mois), nourris avec un rĂ©gime contrĂŽle. Par ailleurs, les effets anti-inflammatoires des micronutriments ont Ă©tĂ© testĂ©s in vitro.Nous avons pu constater que le rĂ©gime riche en saccharose a accĂ©lĂ©rĂ© la perte de masse musculaire liĂ©e Ă  l’ñge en altĂ©rant la synthĂšse protĂ©ique musculaire post prandiale, vraisemblablement via l’altĂ©ration de la sensibilitĂ© Ă  l’insuline plutĂŽt que par une augmentation du stress oxydant et de l'inflammation, qui ont Ă©tĂ© peu affectĂ©s par le rĂ©gime. Il a Ă©galement entraĂźnĂ© un gain de masse grasse et une augmentation marquĂ©e des triglycĂ©rides hĂ©patiques et plasmatiques, qui pourraient en partie s’expliquer par une modification de l’activitĂ© des enzymes du mĂ©tabolisme lipidique dans le foie. Au niveau cĂ©rĂ©bral, la surconsommation de fructose a entraĂźnĂ© une diminution de la concentration protĂ©ique qui ne semble pas due Ă  un dĂ©faut de synthĂšse protĂ©ique. La supplĂ©mentation en micronutriments n’a que partiellement contrecarrĂ© les effets du saccharose puisqu’elle n’a pas eu d’effet sur la masse maigre mais a permis de limiter la prise de masse grasse, notamment en inhibant la lipogenĂšse hĂ©patique. Elle a Ă©galement restaurĂ© la synthĂšse protĂ©ique diminuĂ©e au cours du vieillissement dans le cerveau. In vitro, elle a permis de rĂ©duire l'inflammation induite expĂ©rimentalement.Ainsi, cette thĂšse a permis de montrer qu’un rĂ©gime riche en sucres ajoutĂ©s accĂ©lĂšre la sarcopĂ©nie chez le rat ĂągĂ© mais entraĂźne Ă©galement des altĂ©rations au niveau hĂ©patique et cĂ©rĂ©bral. La prĂ©vention par les micronutriments testĂ©s reste malgrĂ© tout limitĂ©e

    The impact of a high sucrose diet on sarcopenia in aging rats. Metabolic consequences on liver and brain. Preventive effects of a micronutrients supplementation.

    No full text
    Au cours du vieillissement, l’organisme subit de nombreuses altĂ©rations, dont une perte de masse et de fonction musculaire appelĂ©e sarcopĂ©nie. Ses causes sont multifactorielles. Elle est partiellement liĂ©e Ă  une altĂ©ration de la stimulation de la synthĂšse protĂ©ique musculaire post-prandiale, et certains facteurs tels que le stress oxydant, l’inflammation et la rĂ©sistance Ă  l’insuline, responsables de nombreux dysfonctionnements mĂ©taboliques, accĂ©lĂšrent ce phĂ©nomĂšne. Or, ces dĂ©rĂ©gulations peuvent ĂȘtre induites par une alimentation trop riche en sucres ajoutĂ©s, caractĂ©ristique des habitudes alimentaires actuelles et qui pourrait donc accĂ©lĂ©rer le vieillissement. Pourtant, Ă  ce jour, peu d'Ă©tudes ont Ă©tudiĂ© les effets combinĂ©s du vieillissement et d'un rĂ©gime riche en sucres ajoutĂ©s, et Ă  notre connaissance, aucune ne s’est intĂ©ressĂ©e Ă  la sarcopĂ©nie. Ainsi, notre objectif au cours de cette thĂšse a Ă©tĂ© de dĂ©terminer si un rĂ©gime riche en sucres ajoutĂ©s Ă©tait capable d'accĂ©lĂ©rer la sarcopĂ©nie. Il Ă©tait Ă©galement intĂ©ressant d'Ă©tudier les effets combinĂ©s du vieillissement et de ce rĂ©gime sur d'autres tissus qui semblent particuliĂšrement exposĂ©s, le foie, et le cerveau. Enfin, nous avons Ă©galement voulu analyser les effets prĂ©ventifs d'un mĂ©lange de micronutriments Ă  la fois in vivo et in vitro. Pour cela, des rats ĂągĂ©s de 16 mois ont Ă©tĂ© nourris durant 5 mois avec un rĂ©gime contrĂŽle ou un rĂ©gime composĂ© Ă  62% de saccharose, supplĂ©mentĂ© ou non en rutine, vitamine A, vitamine E, vitamine D, zinc, et sĂ©lĂ©nium. En outre, nous avons Ă©galement inclut un groupe de tĂ©moins adultes (8 mois), nourris avec un rĂ©gime contrĂŽle. Par ailleurs, les effets anti-inflammatoires des micronutriments ont Ă©tĂ© testĂ©s in vitro.Nous avons pu constater que le rĂ©gime riche en saccharose a accĂ©lĂ©rĂ© la perte de masse musculaire liĂ©e Ă  l’ñge en altĂ©rant la synthĂšse protĂ©ique musculaire post prandiale, vraisemblablement via l’altĂ©ration de la sensibilitĂ© Ă  l’insuline plutĂŽt que par une augmentation du stress oxydant et de l'inflammation, qui ont Ă©tĂ© peu affectĂ©s par le rĂ©gime. Il a Ă©galement entraĂźnĂ© un gain de masse grasse et une augmentation marquĂ©e des triglycĂ©rides hĂ©patiques et plasmatiques, qui pourraient en partie s’expliquer par une modification de l’activitĂ© des enzymes du mĂ©tabolisme lipidique dans le foie. Au niveau cĂ©rĂ©bral, la surconsommation de fructose a entraĂźnĂ© une diminution de la concentration protĂ©ique qui ne semble pas due Ă  un dĂ©faut de synthĂšse protĂ©ique. La supplĂ©mentation en micronutriments n’a que partiellement contrecarrĂ© les effets du saccharose puisqu’elle n’a pas eu d’effet sur la masse maigre mais a permis de limiter la prise de masse grasse, notamment en inhibant la lipogenĂšse hĂ©patique. Elle a Ă©galement restaurĂ© la synthĂšse protĂ©ique diminuĂ©e au cours du vieillissement dans le cerveau. In vitro, elle a permis de rĂ©duire l'inflammation induite expĂ©rimentalement.Ainsi, cette thĂšse a permis de montrer qu’un rĂ©gime riche en sucres ajoutĂ©s accĂ©lĂšre la sarcopĂ©nie chez le rat ĂągĂ© mais entraĂźne Ă©galement des altĂ©rations au niveau hĂ©patique et cĂ©rĂ©bral. La prĂ©vention par les micronutriments testĂ©s reste malgrĂ© tout limitĂ©e.With aging, several alterations occur, including a loss of muscle mass and function, called sarcopenia. Many factors are responsible for the development of sarcopenia, but some factors as inflammation, oxidative stress and insulin resistance, which have many deleterious effects during aging, can reduce meal-induced stimulation of muscle protein synthesis which was shown to partly explain age-related muscle mass loss. Those factors can be induced by a diet rich in added sugar, characteristic of current dietary habits. Although this kind of diet could accelerate aging features, little is known about combined effect of aging and high sugar diet, particularly on sarcopenia. Thus, the purpose of this work was to determine whether high chronic intake of added sugars could accelerate sarcopenia. We also interested in the combined effect of added sugars and aging on other exposed tissues: liver and brain. Finally, we assessed the preventive effects of a micronutrient supplementation both in vivo and in vitro.In order to do that, for 5 months, 16 month old rats were starch fed or sucrose fed (62% sucrose), with or without micronutrients supplementation (rutin, vitamin A, vitamin E, vitamin D, selenium and zinc). Additionally, an adult control group of 8 month old rats was included. Besides, anti-inflammatory effects of micronutrients were tested in vitro.We showed that high sucrose diet accelerated age-related muscle mass loss by impairing postprandial protein synthesis, likely through decreased insulin sensitivity since inflammation and oxidative stress were only slightly affected by high sucrose diet. This diet also resulted in fat mass gain and increased plasma and liver triglycerides, by modulating the activity of enzymes involved in liver lipid metabolism. In the brain, high sucrose consumption led to decreased protein concentration independently of protein synthesis alteration. Micronutrients supplementation only partially reversed high sucrose diet effects: it did not act on lean body mass but prevented fat mass gain, by inhibiting hepatic lipogenesis. It also restored brain protein synthesis, which was reduced by aging. In vitro, it reduced experimentally induced inflammation.Thus, this work showed that a high sucrose diet accelerates sarcopenia in old rats but also induces liver and brain alterations. Prevention by micronutrients remained limited

    Similarities and interactions between the ageing process and high chronic intake of added sugars

    No full text
    Similarities and interactions between the ageing process and high chronic intake of added sugar

    Une consommation chronique Ă©levĂ©e en sucre accĂ©lĂšre la sarcopĂ©nie et perturbe la sensibilitĂ© Ă  l’insuline et la stimulation post-prandiale de la synthĂšse protĂ©ique musculaire chez le rat ĂągĂ©

    No full text
    PrĂ©sentation orale: Eva GatineauCette annĂ©e les assises sont en partenariat avec le PĂŽle de compĂ©titivitĂ© LyonbiopĂŽle et le cluster Nutravita, des symposiums thĂ©matiques portant sur les interactions entre la recherche acadĂ©mique, l’innovation et l’industrie seront proposĂ©sLe vieillissement est associĂ© Ă  une perte de masse et de fonction musculaire appelĂ©e sarcopĂ©nie. Elle est en partie due Ă  une altĂ©ration de l’anabolisme protĂ©ique musculaire postprandial chez le sujet ĂągĂ©, et notamment Ă  une moindre stimulation de la synthĂšse protĂ©ique musculaire par le repas. Cette rĂ©sistance anabolique est aggravĂ©e par la prĂ©sence d’une inflammation Ă  bas bruit. Elle pourrait Ă©galement ĂȘtre liĂ©e Ă  une diminution de la sensibilitĂ© Ă  l’insuline, hormone capable de stimuler la synthĂšse protĂ©ique en augmentant l’afflux sanguin musculaire et en potentialisant l’effet anabolique des acides aminĂ©s. Or, il a Ă©tĂ© montrĂ© qu’un rĂ©gime riche en fructose Ă©tait capable d’induire une dyslipidĂ©mie, une augmentation de la tension artĂ©rielle, mais aussi une rĂ©sistance Ă  l’insuline et une augmentation du stress oxydant et de l’inflammation. Sachant que la consommation de fructose a fortement augmentĂ© depuis 1970, nous avons cherchĂ© Ă  savoir si les troubles mĂ©taboliques induits par le fructose pouvaient accĂ©lĂ©rer la perte de masse musculaire au cours du vieillissement. Des rats ĂągĂ©s de 16 mois ont Ă©tĂ© nourris durant 5 mois avec un rĂ©gime contrĂŽle (C) (60% d’amidon de blĂ©) ou riche en fructose (F) (l’amidon est remplacĂ© par du saccharose). L’évolution de leur masse maigre (EchoMRI) et le poids des muscles en fin d’expĂ©rimentation ont Ă©tĂ© contrĂŽlĂ©s. La synthĂšse protĂ©ique musculaire a Ă©tĂ© mesurĂ©e in vivo Ă  l’aide d’un acide aminĂ© marquĂ© au 13 C. Le statut inflammatoire (α2-macroglobuline et fibrinogĂšne) a Ă©galement Ă©tĂ© Ă©valuĂ©, ainsi que la sensibilitĂ© Ă  l’insuline, grĂące Ă  un test OGTT. Une diminution de 59% de la sensibilitĂ© Ă  l’insuline a Ă©tĂ© observĂ©e chez les rats F par rapport aux rats C (P<0,01). Les niveaux d’inflammation sont restĂ©s faibles chez les rats C comme chez les rats F, avec une inflammation lĂ©gĂšrement plus Ă©levĂ©e chez les rats F. Ces rats perdent Ă©galement plus de masse maigre que les rats C (-9,3% vs -5,8% respectivement) (P=0,03) et terminent l’expĂ©rience avec des muscles significativement plus petits. La stimulation postprandiale de la synthĂšse protĂ©ique musculaire a Ă©tĂ© rĂ©duite chez les rats F par rapport aux rats C. Le rĂ©gime riche en fructose a donc accĂ©lĂ©rĂ© la perte de masse musculaire au cours du vieillissement en altĂ©rant la stimulation de la synthĂšse protĂ©ique postprandiale. Cet effet semble plutĂŽt dĂ» Ă  une diminution de la sensibilitĂ© Ă  l’insuline qu’à une augmentation de l’inflammatio
    corecore