522 research outputs found

    Optical realization of the two-site Bose-Hubbard model in waveguide lattices

    Full text link
    A classical realization of the two-site Bose-Hubbard Hamiltonian, based on light transport in engineered optical waveguide lattices, is theoretically proposed. The optical lattice enables a direct visualization of the Bose-Hubbard dynamics in Fock space.Comment: to be published, J Phys. B (Fast Track Communication

    Control of unstable macroscopic oscillations in the dynamics of three coupled Bose condensates

    Get PDF
    We study the dynamical stability of the macroscopic quantum oscillations characterizing a system of three coupled Bose-Einstein condensates arranged into an open-chain geometry. The boson interaction, the hopping amplitude and the central-well relative depth are regarded as adjustable parameters. After deriving the stability diagrams of the system, we identify three mechanisms to realize the transition from an unstable to stable behavior and analyze specific configurations that, by suitably tuning the model parameters, give rise to macroscopic effects which are expected to be accessible to experimental observation. Also, we pinpoint a system regime that realizes a Josephson-junction-like effect. In this regime the system configuration do not depend on the model interaction parameters, and the population oscillation amplitude is related to the condensate-phase difference. This fact makes possible estimating the latter quantity, since the measure of the oscillating amplitudes is experimentally accessible.Comment: 25 pages, 12 figure

    Milestones Achieved for the Fluids and Combustion Facility

    Get PDF
    In 2004, President Bush outlined a new space exploration vision for NASA. The exploration programs will seek profound answers to questions of our origins, whether life exists beyond Earth, and how we could live in other worlds. In response, research projects from NASA s Fluid Physics Research Program were moved into the Exploration Systems Mission Directorate and realigned to support the major milestones of this directorate. A new goal of this research is to obtain an understanding of the physical phenomena that are important in the design of the many space-based and ground-based fluids systems that utilize multiphase flow, such as life support, propulsion, and power systems

    Magneto-structural properties of the layered quasi-2D triangular-lattice antiferromagnets Cs2_2CuCl4x_{4-x}Brx_x for x{x} = 0,1,2 and 4

    Full text link
    We present a study of the magnetic susceptibility χmol\chi_{mol} under variable hydrostatic pressure on single crystals of Cs2_2CuCl4x_{4-x}Brx_x. This includes the border compounds \textit{x} = 0 and 4, known as good realizations of the distorted triangular-lattice spin-1/2 Heisenberg antiferromagnet, as well as the isostructural stoichiometric systems Cs2_2CuCl3_{3}Br1_1 and Cs2_2CuCl2_{2}Br2_2. For the determination of the exchange coupling constants JJ and JJ^{\prime}, χmol\chi_{mol} data were fitted by a JJJ-J^{\prime} model \cite{Schmidt2015}. Its application, validated for the border compounds, yields a degree of frustration JJ^{\prime}/JJ = 0.47 for Cs2_2CuCl3_3Br1_1 and JJ^{\prime}/JJ \simeq 0.63 - 0.78 for Cs2_2CuCl2_2Br2_2, making these systems particular interesting representatives of this family. From the evolution of the magnetic susceptibility under pressure up to about 0.4\,GPa, the maximum pressure applied, two observations were made for all the compounds investigated here. First, we find that the overall energy scale, given by Jc=(J2J_c = (J^2 + J2J^{\prime 2})1/2^{1/2}, increases under pressure, whereas the ratio JJ^{\prime}/JJ remains unchanged in this pressure range. These experimental observations are in accordance with the results of DFT calculations performed for these materials. Secondly, for the magnetoelastic coupling constants, extraordinarily small values are obtained. We assign these observations to a structural peculiarity of this class of materials

    Creation of macroscopic quantum superposition states by a measurement

    Full text link
    We propose a novel protocol for the creation of macroscopic quantum superposition (MQS) states based on a measurement of a non-monotonous function of a quantum collective variable. The main advantage of this protocol is that it does not require switching on and off nonlinear interactions in the system. We predict this protocol to allow the creation of multiatom MQS by measuring the number of atoms coherently outcoupled from a two-component (spinor) Bose-Einstein condensate.Comment: 4 pages (revtex4), 2 figure

    Self-trapping of a binary Bose-Einstein condensate induced by interspecies interaction

    Full text link
    The problem of self-trapping of a Bose-Einstein condensate (BEC) and a binary BEC in an optical lattice (OL) and double well (DW) is studied using the mean-field Gross-Pitaevskii equation. For both DW and OL, permanent self-trapping occurs in a window of the repulsive nonlinearity gg of the GP equation: gc1<g<gc2g_{c1}<g<g_{c2}. In case of OL, the critical nonlinearities gc1g_{c1} and gc2g_{c2} correspond to a window of chemical potentials μc1<μ<μc2\mu_{c1}<\mu<\mu_{c2} defining the band gap(s) of the periodic OL. The permanent self-trapped BEC in an OL usually represents a breathing oscillation of a stable stationary gap soliton. The permanent self-trapped BEC in a DW, on the other hand, is a dynamically stabilized state without any stationary counterpart. For a binary BEC with intraspecies nonlinearities outside this window of nonlinearity, a permanent self trapping can be induced by tuning the interspecies interaction such that the effective nonlinearities of the components fall in the above window

    Orion Service Module Reaction Control System Plume Impingement Analysis Using PLIMP/RAMP2

    Get PDF
    The Orion Crew Exploration Vehicle Service Module Reaction Control System engine plume impingement was computed using the plume impingement program (PLIMP). PLIMP uses the plume solution from RAMP2, which is the refined version of the reacting and multiphase program (RAMP) code. The heating rate and pressure (force and moment) on surfaces or components of the Service Module were computed. The RAMP2 solution of the flow field inside the engine and the plume was compared with those computed using GASP, a computational fluid dynamics code, showing reasonable agreement. The computed heating rate and pressure using PLIMP were compared with the Reaction Control System plume model (RPM) solution and the plume impingement dynamics (PIDYN) solution. RPM uses the GASP-based plume solution, whereas PIDYN uses the SCARF plume solution. Three sets of the heating rate and pressure solutions agree well. Further thermal analysis on the avionic ring of the Service Module showed that thermal protection is necessary because of significant heating from the plume

    Build-up of coherence between initially-independent subsystems: The case of Bose-Einstein condensates

    Full text link
    When initially-independent subsystems are made to contact, {\it coherence} can develop due to interaction between them. We exemplify and demonstrate this paradigm through several scenarios of two initially-independent Bose-Einstein condensates which are allowed to collide. The build-up of coherence depends strongly on time, interaction strength and other parameters of each condensate. Implications are discussed.Comment: 11 pages, 3 figure
    corecore