8 research outputs found

    Structures and Conflicts: Ohio's Collective Bargaining Law for Public Employees

    Get PDF

    A new era for understanding amyloid structures and disease

    Get PDF
    The aggregation of proteins into amyloid fibrils and their deposition into plaques and intracellular inclusions is the hallmark of amyloid disease. The accumulation and deposition of amyloid fibrils, collectively known as amyloidosis, is associated with many pathological conditions that can be associated with ageing, such as Alzheimer disease, Parkinson disease, type II diabetes and dialysis-related amyloidosis. However, elucidation of the atomic structure of amyloid fibrils formed from their intact protein precursors and how fibril formation relates to disease has remained elusive. Recent advances in structural biology techniques, including cryo-electron microscopy and solid-state NMR spectroscopy, have finally broken this impasse. The first near-atomic-resolution structures of amyloid fibrils formed in vitro, seeded from plaque material and analysed directly ex vivo are now available. The results reveal cross-β structures that are far more intricate than anticipated. Here, we describe these structures, highlighting their similarities and differences, and the basis for their toxicity. We discuss how amyloid structure may affect the ability of fibrils to spread to different sites in the cell and between organisms in a prion-like manner, along with their roles in disease. These molecular insights will aid in understanding the development and spread of amyloid diseases and are inspiring new strategies for therapeutic intervention

    The value of standards for health datasets in artificial intelligence-based applications

    No full text
    Artificial intelligence as a medical device is increasingly being applied to healthcare for diagnosis, risk stratification and resource allocation. However, a growing body of evidence has highlighted the risk of algorithmic bias, which may perpetuate existing health inequity. This problem arises in part because of systemic inequalities in dataset curation, unequal opportunity to participate in research and inequalities of access. This study aims to explore existing standards, frameworks and best practices for ensuring adequate data diversity in health datasets. Exploring the body of existing literature and expert views is an important step towards the development of consensus-based guidelines. The study comprises two parts: a systematic review of existing standards, frameworks and best practices for healthcare datasets; and a survey and thematic analysis of stakeholder views of bias, health equity and best practices for artificial intelligence as a medical device. We found that the need for dataset diversity was well described in literature, and experts generally favored the development of a robust set of guidelines, but there were mixed views about how these could be implemented practically. The outputs of this study will be used to inform the development of standards for transparency of data diversity in health datasets (the STANDING Together initiative). A systematic review, combined with a stakeholder survey, presents an overview of current practices and recommendations for dataset curation in health, with specific focuses on data diversity and artificial intelligence-based applications.Funding Agencies|This project is funded by the NHS AI Lab at the NHS Transformation Directorate and The Health Foundation and managed by the National Institute for Health and Care Research (AI_HI200014). The views expressed in this publication are those of the author(s) an; NHS AI Lab at the NHS Transformation Directorate [AI_HI200014]; Health Foundation [104687]; National Pathology Imaging Co-operative, NPIC; Data to Early Diagnosis and Precision Medicine strand of the governments Industrial Strategy Challenge Fund; National Institutes of Health Research (NIHR) [AI_HI200014] Funding Source: National Institutes of Health Research (NIHR)</p
    corecore