53 research outputs found

    Spectroscopic characterization of reaction centers of the (M)Y210W mutant of the photosynthetic bacterium Rhodobacter sphaeroides

    Get PDF
    The tyrosine-(M)210 of the reaction center of Rhodobacter sphaeroides 2.4.1 has been changed to a tryptophan using site-directed mutagenesis. The reaction center of this mutant has been characterized by low-temperature absorption and fluorescence spectroscopy, time-resolved sub-picosecond spectroscopy, and magnetic resonance spectroscopy. The charge separation process showed bi-exponential kinetics at room temperature, with a main time constant of 36 ps and an additional fast time constant of 5.1 ps. Temperature dependent fluorescence measurements predict that the lifetime of P* becomes 4–5 times slower at cryogenic temperatures. From EPR and absorbance-detected magnetic resonance (ADMR, LD-ADMR) we conclude that the dimeric structure of P is not significantly changed upon mutation. In contrast, the interaction of the accessory bacteriochlorophyll BA with its environment appears to be altered, possibly because of a change in its position

    Oxygen-sensitive 3He-MRI in bronchiolitis obliterans after lung transplantation

    Get PDF
    Oxygen-sensitive 3He-MRI was studied for the detection of differences in intrapulmonary oxygen partial pressure (pO2) between patients with normal lung transplants and those with bronchiolitis obliterans syndrome (BOS). Using software developed in-house, oxygen-sensitive 3He-MRI datasets from patients with normal lung grafts (n = 8) and with BOS (n = 6) were evaluated quantitatively. Datasets were acqiured on a 1.5-T system using a spoiled gradient echo pulse sequence. Underlying diseases were pulmonary emphysema (n = 10 datasets) and fibrosis (n = 4). BOS status was verified by pulmonary function tests. Additionally, 3He-MRI was assessed blindedly for ventilation defects. Median intrapulmonary pO2 in patients with normal lung grafts was 146 mbar compared with 108 mbar in patients with BOS. Homogeneity of pO2 distribution was greater in normal grafts (standard deviation pO2 34 versus 43 mbar). Median oxygen decrease rate during breath hold was higher in unaffected patients (−1.75 mbar/s versus −0.38 mbar/s). Normal grafts showed fewer ventilation defects (5% versus 28%, medians). Oxygen-sensitive 3He-MRI appears capable of demonstrating differences of intrapulmonary pO2 between normal lung grafts and grafts affected by BOS. Oxygen-sensitive 3He-MRI may add helpful regional information to other diagnostic techniques for the assessment and follow-up of lung transplant recipients

    Impact of the Gut Microbiota on Atorvastatin Mediated Effects on Blood Lipids

    Get PDF
    Background and aims: The mechanisms of interindividual variation of lipid regulation by statins, such as the low-density lipoprotein cholesterol (LDL) lowering effects, are not fully understood yet. Here, we used a gut microbiota depleted mouse model to investigate the relation between the gut microbiota and the regulatory property of atorvastatin on blood lipids. Methods: Mice (C57BL/6) with intact gut microbiota or antibiotic induced abiotic mice (ABS) were put on standard chow diet (SCD) or high fat diet (HFD) for six weeks. Atorvastatin (10 mg/kg body weight/day) or a control vehicle were applied per gavage for the last four weeks of dietary treatment. Blood lipids including total cholesterol, very low-density lipoprotein, low-density lipoprotein, high-density lipoprotein and sphingolipids were measured to probe microbiota-dependent effects of atorvastatin. The expression of genes involved in hepatic and intestinal cholesterol metabolism was analyzed with qRT-PCR. The alteration of the microbiota profile was examined using 16S rRNA qPCR in mice with intact gut microbiota. Results: HFD feeding significantly increased total blood cholesterol and LDL levels, as compared to SCD in both mice with intact and depleted gut microbiota. The cholesterol lowering effect of atorvastatin was significantly attenuated in mice with depleted gut microbiota. Moreover, we observed a global shift in the abundance of several sphingolipids upon atorvastatin treatment which was absent in gut microbiota depleted mice. The regulatory effect of atorvastatin on the expression of distinct hepatic and intestinal cholesterol-regulating genes, including Ldlr, Srebp2 and Npc1l1 was altered upon depletion of gut microbiota. In response to HFD feeding, the relative abundance of the bacterial phyla Bacteroidetes decreased, while the abundance of Firmicutes increased. The altered ratio between Firmicutes to Bacteroidetes was partly reversed in HFD fed mice treated with atorvastatin. Conclusions: Our findings support a regulatory impact of atorvastatin on the gut microbial profile and, in turn, demonstrate a crucial role of the gut microbiome for atorvastatin-related effects on blood lipids. These results provide novel insights into potential microbiota-dependent mechanisms of lipid regulation by statins, which may account for variable response to statin treatment

    Rechtsverständnis - Nachdenken über das Recht | Ein Lehrbuch

    No full text

    Arbeitsvertrag und Direktion | Zweiseitige Leistungsbestimmung im Arbeitsverhältnis

    No full text

    Crystals of a large tryptic peptide (fragment A) of elongation factor EF-Tu from Escherichia coli

    Get PDF
    We have recently described the crystallisation of native EF-Tu.GDP from E. coli [ 1 ] and of the product obtained by mild tryptic digestion of this protein [2] using polyethylene glycol (PEG) 6000 as a precipitant. The crystalline native protein is polymorphic with four interrelated trigonal and hexagonal crystal forms. The pseudo-tetragonal crystals of the trypsin treated pro- tein were found to be essentially identical to those previously described by Sneden et al. [3] and were shown to contain proteolytically degraded protein. A detailed study of the action of trypsin on EF-Tu. GDP by Arai et al. [4] supported our observation [2] that mild proteolysis did not destroy the nucleotide binding properties of the factor even though a number of scissions were made in the polypeptide chain. They also confirmed the observation made in this laboratory (Wittinghofer and Gast, unpublished results) that by incubating the reaction at 0°C the tryptic digestion of EF-Tu.GDP could be essentially limited to the produc- tion of a 39 000 molecular weight species, which they call fragment A. We describe here the crystallisation of this fragment from polyethylene glycol solutions in a form suitable for an X-ray diffraction study
    • …
    corecore