120 research outputs found

    Biocompatibility and Biodegradation Studies of Subconjunctival Implants in Rabbit Eyes

    Get PDF
    Sustained ocular drug delivery is difficult to achieve. Most drugs have poor penetration due to the multiple physiological barriers of the eye and are rapidly cleared if applied topically. Biodegradable subconjunctival implants with controlled drug release may circumvent these two problems. In our study, two microfilms (poly [d,l-lactide-co-glycolide] PLGA and poly[d,l-lactide-co-caprolactone] PLC were developed and evaluated for their degradation behavior in vitro and in vivo. We also evaluated the biocompatibility of both microfilms. Eighteen eyes (9 rabbits) were surgically implanted with one type of microfilm in each eye. Serial anterior-segment optical coherence tomography (AS-OCT) scans together with serial slit-lamp microscopy allowed us to measure thickness and cross-sectional area of the microfilms. In vitro studies revealed bulk degradation kinetics for both microfilms, while in vivo studies demonstrated surface erosion kinetics. Serial slit-lamp microscopy revealed no significant inflammation or vascularization in both types of implants (mean increase in vascularity grade PLGA50/50 12±0.5% vs. PLC70/30 15±0.6%; P = 0.91) over a period of 6 months. Histology, immunohistochemistry and immuno-fluorescence also revealed no significant inflammatory reaction from either of the microfilms, which confirmed that both microfilms are biocompatible. The duration of the drug delivery can be tailored by selecting the materials, which have different degradation kinetics, to suit the desired clinical therapeutic application

    Molecular Dynamics Analysis of Apolipoprotein-D - Lipid Hydroperoxide Interactions: Mechanism for Selective Oxidation of Met-93

    Get PDF
    Background: Recent studies suggest reduction of radical-propagating fatty acid hydroperoxides to inert hydroxides by interaction with apolipoprotein-D (apoD) Met93 may represent an antioxidant function for apoD. The nature and structural consequences of this selective interaction are unknown. Methodology/Principal Findings: Herein we used molecular dynamics (MD) analysis to address these issues. Longtimescale simulations of apoD suggest lipid molecules are bound flexibly, with the molecules free to explore multiple conformations in a binding site at the entrance to the classical lipocalin ligand-binding pocket. Models of 5s- 12s- and 15s hydroperoxyeicosatetraenoic acids were created and the lipids found to wrap around Met93 thus providing a plausible mechanism by which eicosatetraenoic acids bearing hydroperoxides on different carbon atoms can interact with Met93 to yield Met93 sulfoxide (Met93SO). Simulations of glycosylated apoD indicated that a second solvent exposed Met at position 49 was shielded by a triantennerary N-glycan attached to Asn45 thereby precluding lipid interactions. MD simulations of apoD showed B-factors of the loop containing Met93SO were higher in the oxidized protein, indicating increased flexibility that is predicted to destabilize the protein and promote self-association. Conclusions/Significance: These studies provide novel insights into the mechanisms that may contribute to the antioxidant function of apoD and the structural consequences that result if Met93SO is not redox-cycled back to its native state

    DNA Display Selection of Peptide Ligands for a Full-Length Human G Protein-Coupled Receptor on CHO-K1 Cells

    Get PDF
    The G protein-coupled receptors (GPCRs), which form the largest group of transmembrane proteins involved in signal transduction, are major targets of currently available drugs. Thus, the search for cognate and surrogate peptide ligands for GPCRs is of both basic and therapeutic interest. Here we describe the application of an in vitro DNA display technology to screening libraries of peptide ligands for full-length GPCRs expressed on whole cells. We used human angiotensin II (Ang II) type-1 receptor (hAT1R) as a model GPCR. Under improved selection conditions using hAT1R-expressing Chinese hamster ovary (CHO)-K1 cells as bait, we confirmed that Ang II gene could be enriched more than 10,000-fold after four rounds of selection. Further, we successfully selected diverse Ang II-like peptides from randomized peptide libraries. The results provide more precise information on the sequence-function relationships of hAT1R ligands than can be obtained by conventional alanine-scanning mutagenesis. Completely in vitro DNA display can overcome the limitations of current display technologies and is expected to prove widely useful for screening diverse libraries of mutant peptide and protein ligands for receptors that can be expressed functionally on the surface of CHO-K1 cells

    The Transmembrane Domain of CEACAM1-4S Is a Determinant of Anchorage Independent Growth and Tumorigenicity

    Get PDF
    CEACAM1 is a multifunctional Ig-like cell adhesion molecule expressed by epithelial cells in many organs. CEACAM1-4L and CEACAM1-4S, two isoforms produced by differential splicing, are predominant in rat liver. Previous work has shown that downregulation of both isoforms occurs in rat hepatocellular carcinomas. Here, we have isolated an anchorage dependent clone, designated 253T-NT that does not express detectable levels of CEACAM1. Stable transfection of 253-NT cells with a wild type CEACAM1-4S expression vector induced an anchorage independent growth in vitro and a tumorigenic phenotype in vivo. These phenotypes were used as quantifiable end points to examine the functionality of the CEACAM1-4S transmembrane domain. Examination of the CEACAM1 transmembrane domain showed N-terminal GXXXG dimerization sequences and C-terminal tyrosine residues shown in related studies to stabilize transmembrane domain helix-helix interactions. To examine the effects of transmembrane domain mutations, 253-NT cells were transfected with transmembrane domain mutants carrying glycine to leucine or tyrosine to valine substitutions. Results showed that mutation of transmembrane tyrosine residues greatly enhanced growth in vitro and in vivo. Mutation of transmembrane dimerization motifs, in contrast, significantly reduced anchorage independent growth and tumorigenicity. 253-NT cells expressing CEACAM1-4S with both glycine to leucine and tyrosine to valine mutations displayed the growth-enhanced phenotype of tyrosine mutants. The dramatic effect of transmembrane domain mutations constitutes strong evidence that the transmembrane domain is an important determinant of CEACAM1-4S functionality and most likely by other proteins with transmembrane domains containing dimerization sequences and/or C-terminal tyrosine residues

    Carbon Monoxide Promotes Respiratory Hemoproteins Iron Reduction Using Peroxides as Electron Donors

    Get PDF
    The physiological role of the respiratory hemoproteins (RH), hemoglobin and myoglobin, is to deliver O2 via its binding to their ferrous (FeII) heme-iron. Under variety of pathological conditions RH proteins leak to blood plasma and oxidized to ferric (FeIII, met) forms becoming the source of oxidative vascular damage. However, recent studies have indicated that both metRH and peroxides induce Heme Oxygenase (HO) enzyme producing carbon monoxide (CO). The gas has an extremely high affinity for the ferrous heme-iron and is known to reduce ferric hemoproteins in the presence of suitable electron donors. We hypothesized that under in vivo plasma conditions, peroxides at low concentration can assist the reduction of metRH in presence of CO. The effect of CO on interaction of metRH with hydrophilic or hydrophobic peroxides was analyzed by following Soret and visible light absorption changes in reaction mixtures. It was found that under anaerobic conditions and low concentrations of RH and peroxides mimicking plasma conditions, peroxides served as electron donors and RH were reduced to their ferrous carboxy forms. The reaction rates were dependent on CO as well as peroxide concentrations. These results demonstrate that oxidative activity of acellular ferric RH and peroxides may be amended by CO turning on the reducing potential of peroxides and facilitating the formation of redox-inactive carboxyRH. Our data suggest the possible role of HO/CO in protection of vascular system from oxidative damage

    The Skeletal Organic Matrix from Mediterranean Coral Balanophyllia europaea Influences Calcium Carbonate Precipitation

    Get PDF
    Scleractinian coral skeletons are made mainly of calcium carbonate in the form of aragonite. The mineral deposition occurs in a biological confined environment, but it is still a theme of discussion to what extent the calcification occurs under biological or environmental control. Hence, the shape, size and organization of skeletal crystals from the cellular level through the colony architecture, were attributed to factors as diverse as mineral supersaturation levels and organic mediation of crystal growth. The skeleton contains an intra-skeletal organic matrix (OM) of which only the water soluble component was chemically and physically characterized. In this work that OM from the skeleton of the Balanophyllia europaea, a solitary scleractinian coral endemic to the Mediterranean Sea, is studied in vitro with the aim of understanding its role in the mineralization of calcium carbonate. Mineralization of calcium carbonate was conducted by overgrowth experiments on coral skeleton and in calcium chloride solutions containing different ratios of water soluble and/or insoluble OM and of magnesium ions. The precipitates were characterized by diffractometric, spectroscopic and microscopic techniques. The results showed that both soluble and insoluble OM components influence calcium carbonate precipitation and that the effect is enhanced by their co-presence. The role of magnesium ions is also affected by the presence of the OM components. Thus, in vitro, OM influences calcium carbonate crystal morphology, aggregation and polymorphism as a function of its composition and of the content of magnesium ions in the precipitation media. This research, although does not resolve the controversy between environmental or biological control on the deposition of calcium carbonate in corals, sheds a light on the role of OM, which appears mediated by the presence of magnesium ions

    Curcumin Promotes A-beta Fibrillation and Reduces Neurotoxicity in Transgenic Drosophila

    Get PDF
    The pathology of Alzheimer's disease (AD) is characterized by the presence of extracellular deposits of misfolded and aggregated amyloid-β (Aβ) peptide and intraneuronal accumulation of tangles comprised of hyperphosphorylated Tau protein. For several years, the natural compound curcumin has been proposed to be a candidate for enhanced clearance of toxic Aβ amyloid. In this study we have studied the potency of feeding curcumin as a drug candidate to alleviate Aβ toxicity in transgenic Drosophila. The longevity as well as the locomotor activity of five different AD model genotypes, measured relative to a control line, showed up to 75% improved lifespan and activity for curcumin fed flies. In contrast to the majority of studies of curcumin effects on amyloid we did not observe any decrease in the amount of Aβ deposition following curcumin treatment. Conformation-dependent spectra from p-FTAA, a luminescent conjugated oligothiophene bound to Aβ deposits in different Drosophila genotypes over time, indicated accelerated pre-fibrillar to fibril conversion of Aβ1–42 in curcumin treated flies. This finding was supported by in vitro fibrillation assays of recombinant Aβ1–42. Our study shows that curcumin promotes amyloid fibril conversion by reducing the pre-fibrillar/oligomeric species of Aβ, resulting in a reduced neurotoxicity in Drosophila

    Multiple Statistical Analysis Techniques Corroborate Intratumor Heterogeneity in Imaging Mass Spectrometry Datasets of Myxofibrosarcoma

    Get PDF
    MALDI mass spectrometry can generate profiles that contain hundreds of biomolecular ions directly from tissue. Spatially-correlated analysis, MALDI imaging MS, can simultaneously reveal how each of these biomolecular ions varies in clinical tissue samples. The use of statistical data analysis tools to identify regions containing correlated mass spectrometry profiles is referred to as imaging MS-based molecular histology because of its ability to annotate tissues solely on the basis of the imaging MS data. Several reports have indicated that imaging MS-based molecular histology may be able to complement established histological and histochemical techniques by distinguishing between pathologies with overlapping/identical morphologies and revealing biomolecular intratumor heterogeneity. A data analysis pipeline that identifies regions of imaging MS datasets with correlated mass spectrometry profiles could lead to the development of novel methods for improved diagnosis (differentiating subgroups within distinct histological groups) and annotating the spatio-chemical makeup of tumors. Here it is demonstrated that highlighting the regions within imaging MS datasets whose mass spectrometry profiles were found to be correlated by five independent multivariate methods provides a consistently accurate summary of the spatio-chemical heterogeneity. The corroboration provided by using multiple multivariate methods, efficiently applied in an automated routine, provides assurance that the identified regions are indeed characterized by distinct mass spectrometry profiles, a crucial requirement for its development as a complementary histological tool. When simultaneously applied to imaging MS datasets from multiple patient samples of intermediate-grade myxofibrosarcoma, a heterogeneous soft tissue sarcoma, nodules with mass spectrometry profiles found to be distinct by five different multivariate methods were detected within morphologically identical regions of all patient tissue samples. To aid the further development of imaging MS based molecular histology as a complementary histological tool the Matlab code of the agreement analysis, instructions and a reduced dataset are included as supporting information
    corecore