628 research outputs found

    The Birth of the Modern Era of Parkinson's Disease Genetics

    Get PDF
    Genetic understanding in Parkinson’s disease (PD) has followed a path of hard won evolution occasionally punctuated by revolution. While it was suggested early on by both Leroux and Gowers that heredity had a role to play in PD, this was a view that wasn’t widely enough held to even be unpopular. The dogma was that the disease was one of environmental provenance and while the evidence for this is still rather scarce, this view pervades in the minds of patients, clinicians, and scientists. Conversely the evidence linking genetics to PD is both overwhelming and growing. Here we describe the growth of genetics in PD from backwater to driving force, and the structure and shape of its future. The localization and identification of α-synuclein mutations as a cause of PD in the mid 1990’s was perhaps the first concrete and revolutionary finding in PD genetics [1]. This came about as a result of the intuition and hard work of a clinical team from New Jersey, followed by the linkage and positional cloning efforts of a genetic team at NIH, orchestrated by the then director of NINDS, Zach Hall. This effort (described by Bob Nussbaum in another article in this issue) was an extraordinary success. The discovery of α-synuclein mutations as a rare cause of PD was an invigorating and welcome progression for myriad reasons. Most prominently, it gave us the mutation as a tool with which to attempt to understand the disease process. Perhaps more importantly, at least in the short term, it provided empirical evidence that there was a genetic basis for rare forms of the disease and because α-synuclein was a major component of all Lewy bodies, that these findings were directly relevant to all cases of PD. This in fact, prompted one of us to say, tongue in cheek “If you’re not working on synuclein, you’re not working on Parkinson’s disease”

    Dispersive analysis of the scalar form factor of the nucleon

    Get PDF
    Based on the recently proposed Roy-Steiner equations for pion-nucleon scattering, we derive a system of coupled integral equations for the pi pi --> N-bar N and K-bar K --> N-bar N S-waves. These equations take the form of a two-channel Muskhelishvili-Omnes problem, whose solution in the presence of a finite matching point is discussed. We use these results to update the dispersive analysis of the scalar form factor of the nucleon fully including K-bar K intermediate states. In particular, we determine the correction Delta_sigma=sigma(2M_pi^2)-sigma_{pi N}, which is needed for the extraction of the pion-nucleon sigma term from pi N scattering, as a function of pion-nucleon subthreshold parameters and the pi N coupling constant.Comment: 24 pages, 6 figures; version published in JHE

    Measuring every particle's size from three-dimensional imaging experiments

    Full text link
    Often experimentalists study colloidal suspensions that are nominally monodisperse. In reality these samples have a polydispersity of 4-10%. At the level of an individual particle, the consequences of this polydispersity are unknown as it is difficult to measure an individual particle size from microscopy. We propose a general method to estimate individual particle radii within a moderately concentrated colloidal suspension observed with confocal microscopy. We confirm the validity of our method by numerical simulations of four major systems: random close packing, colloidal gels, nominally monodisperse dense samples, and nominally binary dense samples. We then apply our method to experimental data, and demonstrate the utility of this method with results from four case studies. In the first, we demonstrate that we can recover the full particle size distribution {\it in situ}. In the second, we show that accounting for particle size leads to more accurate structural information in a random close packed sample. In the third, we show that crystal nucleation occurs in locally monodisperse regions. In the fourth, we show that particle mobility in a dense sample is correlated to the local volume fraction.Comment: 7 pages, 5 figure

    Biomechanics of bone-fracture fixation by stiffness-graded plates in comparison with stainless-steel plates

    Get PDF
    BACKGROUND: In the internal fixation of fractured bone by means of bone-plates fastened to the bone on its tensile surface, an on-going concern has been the excessive stress-shielding of the bone by the excessively-stiff stainless-steel plate. The compressive stress-shielding at the fracture-interface immediately after fracture-fixation delays callus formation and bone healing. Likewise, the tensile stress-shielding of the layer of the bone underneath the plate can cause osteoporosis and decrease in tensile strength of this layer. METHOD: In order to address this problem, we propose to use stiffness-graded plates. Accordingly, we have computed (by finite-element analysis) the stress distribution in the fractured bone fixed by composite plates, whose stiffness is graded both longitudinally and transversely. RESULTS: It can be seen that the stiffness-graded composite-plates cause less stress-shielding (as an example: at 50% of the healing stage, stress at the fracture interface is compressive in nature i.e. 0.002 GPa for stainless steel plate whereas stiffness graded plates provides tensile stress of 0.002 GPa. This means that stiffness graded plate is allowing the 50% healed bone to participate in loadings). Stiffness-graded plates are more flexible, and hence permit more bending of the fractured bone. This results in higher compressive stresses induced at the fractured faces accelerate bone-healing. On the other hand, away from the fracture interface the reduced stiffness and elastic modulus of the plate causes the neutral axis of the composite structure to be lowered into the bone resulting in the higher tensile stress in the bone-layer underneath the plate, wherein is conducive to the bone preserving its tensile strength. CONCLUSION: Stiffness graded plates (with in-built variable stiffness) are deemed to offer less stress-shielding to the bone, providing higher compressive stress at the fractured interface (to induce accelerated healing) as well as higher tensile stress in the intact portion of the bone (to prevent bone remodeling and osteoporosis)

    The CDK inhibitor CR8 acts as a molecular glue degrader that depletes cyclin K

    Get PDF
    Molecular glue compounds induce protein-protein interactions that, in the context of a ubiquitin ligase, lead to protein degradation1. Unlike traditional enzyme inhibitors, these molecular glue degraders act substoichiometrically to catalyse the rapid depletion of previously inaccessible targets2. They are clinically effective and highly sought-after, but have thus far only been discovered serendipitously. Here, through systematically mining databases for correlations between the cytotoxicity of 4,518 clinical and preclinical small molecules and the expression levels of E3 ligase components across hundreds of human cancer cell lines3-5, we identify CR8-a cyclin-dependent kinase (CDK) inhibitor6-as a compound that acts as a molecular glue degrader. The CDK-bound form of CR8 has a solvent-exposed pyridyl moiety that induces the formation of a complex between CDK12-cyclin K and the CUL4 adaptor protein DDB1, bypassing the requirement for a substrate receptor and presenting cyclin K for ubiquitination and degradation. Our studies demonstrate that chemical alteration of surface-exposed moieties can confer gain-of-function glue properties to an inhibitor, and we propose this as a broader strategy through which target-binding molecules could be converted into molecular glues

    Inter-hemispheric EEG coherence analysis in Parkinson's disease : Assessing brain activity during emotion processing

    Get PDF
    Parkinson’s disease (PD) is not only characterized by its prominent motor symptoms but also associated with disturbances in cognitive and emotional functioning. The objective of the present study was to investigate the influence of emotion processing on inter-hemispheric electroencephalography (EEG) coherence in PD. Multimodal emotional stimuli (happiness, sadness, fear, anger, surprise, and disgust) were presented to 20 PD patients and 30 age-, education level-, and gender-matched healthy controls (HC) while EEG was recorded. Inter-hemispheric coherence was computed from seven homologous EEG electrode pairs (AF3–AF4, F7–F8, F3–F4, FC5–FC6, T7–T8, P7–P8, and O1–O2) for delta, theta, alpha, beta, and gamma frequency bands. In addition, subjective ratings were obtained for a representative of emotional stimuli. Interhemispherically, PD patients showed significantly lower coherence in theta, alpha, beta, and gamma frequency bands than HC during emotion processing. No significant changes were found in the delta frequency band coherence. We also found that PD patients were more impaired in recognizing negative emotions (sadness, fear, anger, and disgust) than relatively positive emotions (happiness and surprise). Behaviorally, PD patients did not show impairment in emotion recognition as measured by subjective ratings. These findings suggest that PD patients may have an impairment of inter-hemispheric functional connectivity (i.e., a decline in cortical connectivity) during emotion processing. This study may increase the awareness of EEG emotional response studies in clinical practice to uncover potential neurophysiologic abnormalities

    Genomic-Bioinformatic Analysis of Transcripts Enriched in the Third-Stage Larva of the Parasitic Nematode Ascaris suum

    Get PDF
    Differential transcription in Ascaris suum was investigated using a genomic-bioinformatic approach. A cDNA archive enriched for molecules in the infective third-stage larva (L3) of A. suum was constructed by suppressive-subtractive hybridization (SSH), and a subset of cDNAs from 3075 clones subjected to microarray analysis using cDNA probes derived from RNA from different developmental stages of A. suum. The cDNAs (n = 498) shown by microarray analysis to be enriched in the L3 were sequenced and subjected to bioinformatic analyses using a semi-automated pipeline (ESTExplorer). Using gene ontology (GO), 235 of these molecules were assigned to ‘biological process’ (n = 68), ‘cellular component’ (n = 50), or ‘molecular function’ (n = 117). Of the 91 clusters assembled, 56 molecules (61.5%) had homologues/orthologues in the free-living nematodes Caenorhabditis elegans and C. briggsae and/or other organisms, whereas 35 (38.5%) had no significant similarity to any sequences available in current gene databases. Transcripts encoding protein kinases, protein phosphatases (and their precursors), and enolases were abundantly represented in the L3 of A. suum, as were molecules involved in cellular processes, such as ubiquitination and proteasome function, gene transcription, protein–protein interactions, and function. In silico analyses inferred the C. elegans orthologues/homologues (n = 50) to be involved in apoptosis and insulin signaling (2%), ATP synthesis (2%), carbon metabolism (6%), fatty acid biosynthesis (2%), gap junction (2%), glucose metabolism (6%), or porphyrin metabolism (2%), although 34 (68%) of them could not be mapped to a specific metabolic pathway. Small numbers of these 50 molecules were predicted to be secreted (10%), anchored (2%), and/or transmembrane (12%) proteins. Functionally, 17 (34%) of them were predicted to be associated with (non-wild-type) RNAi phenotypes in C. elegans, the majority being embryonic lethality (Emb) (13 types; 58.8%), larval arrest (Lva) (23.5%) and larval lethality (Lvl) (47%). A genetic interaction network was predicted for these 17 C. elegans orthologues, revealing highly significant interactions for nine molecules associated with embryonic and larval development (66.9%), information storage and processing (5.1%), cellular processing and signaling (15.2%), metabolism (6.1%), and unknown function (6.7%). The potential roles of these molecules in development are discussed in relation to the known roles of their homologues/orthologues in C. elegans and some other nematodes. The results of the present study provide a basis for future functional genomic studies to elucidate molecular aspects governing larval developmental processes in A. suum and/or the transition to parasitism

    Molecular evidence of Rickettsia felis infection in dogs from northern territory, Australia

    Get PDF
    The prevalence of spotted fever group rickettsial infection in dogs from a remote indigenous community in the Northern Territory (NT) was determined using molecular tools. Blood samples collected from 130 dogs in the community of Maningrida were subjected to a spotted fever group (SFG)-specific PCR targeting the ompB gene followed by a Rickettsia felis-specific PCR targeting the gltA gene of R. felis. Rickettsia felis ompB and gltA genes were amplified from the blood of 3 dogs. This study is the first report of R. felis infection in indigenous community dogs in NT

    An improved parameter estimation and comparison for soft tissue constitutive models containing an exponential function

    Get PDF
    Motivated by the well-known result that stiffness of soft tissue is proportional to the stress, many of the constitutive laws for soft tissues contain an exponential function. In this work, we analyze properties of the exponential function and how it affects the estimation and comparison of elastic parameters for soft tissues. In particular, we find that as a consequence of the exponential function there are lines of high covariance in the elastic parameter space. As a result, one can have widely varying mechanical parameters defining the tissue stiffness but similar effective stress–strain responses. Drawing from elementary algebra, we propose simple changes in the norm and the parameter space, which significantly improve the convergence of parameter estimation and robustness in the presence of noise. More importantly, we demonstrate that these changes improve the conditioning of the problem and provide a more robust solution in the case of heterogeneous material by reducing the chances of getting trapped in a local minima. Based upon the new insight, we also propose a transformed parameter space which will allow for rational parameter comparison and avoid misleading conclusions regarding soft tissue mechanics

    Bone Degeneration and Recovery after Early and Late Bisphosphonate Treatment of Ovariectomized Wistar Rats Assessed by In Vivo Micro-Computed Tomography

    Get PDF
    Bisphosphonates are antiresorptive drugs commonly used to treat osteoporosis. It is not clear, however, what the influence of the time point of treatment is. Recently developed in vivo micro-computed tomographic (CT) scanners offer the possibility to study such effects on bone microstructure in rats. The aim of this study was to determine the influence of early and late zoledronic acid treatment on bone in ovariectomized rats, using in vivo micro-CT. Twenty-nine female Wistar rats were divided into the following groups: ovariectomy (OVX, n = 5), OVX and zoledronic acid (ZOL) at week 0 (n = 8), OVX and ZOL at week 8 (n = 7), and sham (n = 9). CT scans were made of the proximal tibia at weeks 0, 2, 4, 8, 12, and 16; and bone structural parameters were determined in the metaphysis. Two fluorescent labels were administered to calculate dynamic histomorphometric parameters. At week 16, all groups were significantly different from each other in bone volume fraction (BV/TV), connectivity density, and trabecular number (Tb.N), except for the early ZOL and control groups which were not significantly different for any structural parameter. After ZOL treatment at week 8, BV/TV, structure model index, Tb.N, and trabecular thickness significantly improved in the late ZOL group. The OVX and ZOL groups showed, respectively, higher and lower bone formation rates than the control group. Early ZOL treatment inhibited all bone microstructural changes seen after OVX. Late ZOL treatment significantly improved bone microstructure, although the structure did not recover to original levels. Early ZOL treatment resulted in a significantly better microstructure than late treatment. However, late treatment was still significantly better than no treatment
    corecore