247 research outputs found

    Exactly solvable model of quantum diffusion

    Get PDF
    We study the transport property of diffusion in a finite translationally invariant quantum subsystem described by a tight-binding Hamiltonian with a single energy band and interacting with its environment by a coupling in terms of correlation functions which are delta-correlated in space and time. For weak coupling, the time evolution of the subsystem density matrix is ruled by a quantum master equation of Lindblad type. Thanks to the invariance under spatial translations, we can apply the Bloch theorem to the subsystem density matrix and exactly diagonalize the time evolution superoperator to obtain the complete spectrum of its eigenvalues, which fully describe the relaxation to equilibrium. Above a critical coupling which is inversely proportional to the size of the subsystem, the spectrum at given wavenumber contains an isolated eigenvalue describing diffusion. The other eigenvalues rule the decay of the populations and quantum coherences with decay rates which are proportional to the intensity of the environmental noise. On the other hand, an analytical expression is obtained for the dispersion relation of diffusion. The diffusion coefficient is proportional to the square of the width of the energy band and inversely proportional to the intensity of the environmental noise because diffusion results from the perturbation of quantum tunneling by the environmental fluctuations in this model. Diffusion disappears below the critical coupling.Comment: Submitted to J. Stat. Phy

    Semiclassical theory of the emission properties of wave-chaotic resonant cavities

    Full text link
    We develop a perturbation theory for the lifetime and emission intensity for isolated resonances in asymmetric resonant cavities. The inverse lifetime Γ\Gamma and the emission intensity I(θ)I(\theta) in the open system are expressed in terms of matrix elements of operators evaluated with eigenmodes of the closed resonator. These matrix elements are calculated in a semiclassical approximation which allows us to represent Γ\Gamma and I(θ)I(\theta) as sums over the contributions of rays which escape the resonator by refraction.Comment: 4 pages, 2 color figure

    Microwave study of quantum n-disk scattering

    Full text link
    We describe a wave-mechanical implementation of classically chaotic n-disk scattering based on thin 2-D microwave cavities. Two, three, and four-disk scattering are investigated in detail. The experiments, which are able to probe the stationary Green's function of the system, yield both frequencies and widths of the low-lying quantum resonances. The observed spectra are found to be in good agreement with calculations based on semiclassical periodic orbit theory. Wave-vector autocorrelation functions are analyzed for various scattering geometries, the small wave-vector behavior allowing one to extract the escape rate from the quantum repeller. Quantitative agreement is found with the value predicted from classical scattering theory. For intermediate energies, non-universal oscillations are detected in the autocorrelation function, reflecting the presence of periodic orbits.Comment: 13 pages, 8 eps figures include

    Fluctuation theorem for currents and Schnakenberg network theory

    Full text link
    A fluctuation theorem is proved for the macroscopic currents of a system in a nonequilibrium steady state, by using Schnakenberg network theory. The theorem can be applied, in particular, in reaction systems where the affinities or thermodynamic forces are defined globally in terms of the cycles of the graph associated with the stochastic process describing the time evolution.Comment: new version : 16 pages, 1 figure, to be published in Journal of Statistical Physic

    Classical transients and the support of open quantum maps

    Get PDF
    The basic ingredients in a semiclassical theory are the classical invariant objects serving as a support for the quantization. Recent studies, mainly obtained on quantum maps, have led to the commonly accepted belief that it is the classical repeller -- the set of non escaping orbits in the future and past evolution -- the object that suitably plays this role in open scattering systems. In this paper we present numerical evidence warning that this may not always be the case. For this purpose we study recently introduced families of tribaker maps [L. Ermann, G.G. Carlo, J.M. Pedrosa, and M. Saraceno, Phys. Rev. E {\bf 85}, 066204 (2012)], which share the same asymptotic properties but differ in their short time behavior. We have found that although the eigenvalue distribution of the evolution operator of these maps follows the fractal Weyl law prediction, the theory of short periodic orbits for open maps fails to describe the resonance eigenfunctions of some of them. This is a strong indication that new elements must be included in the semiclassical description of open quantum systems.Comment: 7 pages, 9 figure

    Posterior probability and fluctuation theorem in stochastic processes

    Full text link
    A generalization of fluctuation theorems in stochastic processes is proposed. The new theorem is written in terms of posterior probabilities, which are introduced via the Bayes theorem. In usual fluctuation theorems, a forward path and its time reversal play an important role, so that a microscopically reversible condition is essential. In contrast, the microscopically reversible condition is not necessary in the new theorem. It is shown that the new theorem adequately recovers various theorems and relations previously known, such as the Gallavotti-Cohen-type fluctuation theorem, the Jarzynski equality, and the Hatano-Sasa relation, when adequate assumptions are employed.Comment: 4 page

    Dissipative chaotic scattering

    Get PDF
    We show that weak dissipation, typical in realistic situations, can have a metamorphic consequence on nonhyperbolic chaotic scattering in the sense that the physically important particle-decay law is altered, no matter how small the amount of dissipation. As a result, the previous conclusion about the unity of the fractal dimension of the set of singularities in scattering functions, a major claim about nonhyperbolic chaotic scattering, may not be observable.Comment: 4 pages, 2 figures, revte

    Efficiency of Free Energy Transduction in Autonomous Systems

    Full text link
    We consider the thermodynamics of chemical coupling from the viewpoint of free energy transduction efficiency. In contrast to an external parameter-driven stochastic energetics setup, the dynamic change of the equilibrium distribution induced by chemical coupling, adopted, for example, in biological systems, is inevitably an autonomous process. We found that the efficiency is bounded by the ratio between the non-symmetric and the symmetrized Kullback-Leibler distance, which is significantly lower than unity. Consequences of this low efficiency are demonstrated in the simple two-state case, which serves as an important minimal model for studying the energetics of biomolecules.Comment: 4 pages, 4 figure

    Spectral behavior of contractive noise

    Get PDF
    We study the behavior of the spectra corresponding to quantum systems subjected to a contractive noise, i.e. the environment reduces the accessible phase space of the system, but the total probability is conserved. We find that the number of long lived resonances grows as a power law in \hbar but surprisingly there is no relationship between the exponent of this power law and the fractal dimension of the corresponding classical attractor. This is in disagreement with the predictions of the fractal Weyl law which has been established for open systems where the probability is lost under the effect of a projective noise.Comment: 5 pages, 8 figure

    Predictability in the large: an extension of the concept of Lyapunov exponent

    Full text link
    We investigate the predictability problem in dynamical systems with many degrees of freedom and a wide spectrum of temporal scales. In particular, we study the case of 3D3D turbulence at high Reynolds numbers by introducing a finite-size Lyapunov exponent which measures the growth rate of finite-size perturbations. For sufficiently small perturbations this quantity coincides with the usual Lyapunov exponent. When the perturbation is still small compared to large-scale fluctuations, but large compared to fluctuations at the smallest dynamically active scales, the finite-size Lyapunov exponent is inversely proportional to the square of the perturbation size. Our results are supported by numerical experiments on shell models. We find that intermittency corrections do not change the scaling law of predictability. We also discuss the relation between finite-size Lyapunov exponent and information entropy.Comment: 4 pages, 2 Postscript figures (included), RevTeX 3.0, files packed with uufile
    corecore