8 research outputs found

    Generalized pupil function of a compound X-ray refractive lens

    Get PDF
    Quality of a refractive compound X-ray lens can be limited by imperfections in surfaces of unit lenses and stacking precision. In general case both the lens transmission and optical aberrations define properties of a beam in the lens exit plane; together they can be expressed in terms of the generalized pupil function. In this work we measure this function for a diamond single crystal compound refractive lens. Consequently, we apply the pupil function to evaluate the performance of the examined compound refractive X-ray lens. A number of practically important conclusions can be drawn from such analysis

    Plasma Equilibrium inside Various Cross-Section Capillary Discharges

    Full text link
    Plasma properties inside a hydrogen-filled capillary discharge waveguide were modeled with dissipative magnetohydrodynamic simulations to enable analysis of capillaries of circular and square cross-sections implying that square capillaries can be used to guide circularly-symmetric laser beams. When the quasistationary stage of the discharge is reached, the plasma and temperature in the vicinity of the capillary axis has almost the same profile for both the circular and square capillaries. The effect of cross-section on the electron beam focusing properties were studied using the simulation-derived magnetic field map. Particle tracking simulations showed only slight effects on the electron beam symmetry in the horizontal and diagonal directions for square capillary.Comment: 6 pages, 10 figure

    Non-adiabatic cluster expansion after ultrashort laser interaction

    Get PDF
    AbstractWe used X-ray spectroscopy as a diagnostic tool for investigating the properties of laser-cluster interactions at the stage in which non-adiabatic cluster expansion takes place and a quasi-homogeneous plasma is produced. The experiment was carried out with a 10 TW, 65 fs Ti:Sa laser focused on CO2 cluster jets. The effect of different laser-pulse contrast ratios and cluster concentrations was investigated. The X-ray emission associated to the Rydberg transitions allowed us to retrieve, through the density and temperature of the emitting plasma, the time after the beginning of the interaction at which the emission occurred. The comparison of this value with the estimated time for the "homogeneous" plasma formation shows that the degree of adiabaticity depends on both the cluster concentration and the pulse contrast. Interferometric measurements support the X-ray data concerning the plasma electron density

    Mathematical modelling of fast magnetohydrodynamic (mgd) processes

    No full text
    The hydrogasodynamics and technology a of melt treatment out of furnace by high-implused jets of neutral gas were studied. The conception of a jet synthesis, blowing regimes and devices to solve problems of melt treatment in ladle was developed. The appropriatenesses of melt degassing and homogenizig in ladle at the blowing by trans- and ultrasonic jets of neutral gas were obtained experimentaly. The approptiatenesses of gas-powder jets outflow were studied and a new class of blowing regimes and devices for powder material injection was developed. The principles of construction and optimization of regime parameters of blowing devices, regimes and devices for melt degassing by trans- and ultrasonic jets of neutral gas to inject the powder materials in a melt, technological decisions, concerning the correction of the chemical composition and temperature of a melt in ladle were developed. The principles of a temperature melting regime optimization were developed. The results obtained were applied in the West-Siberian Metallurgical works. The increase of the metal quality allowed to decrease the reject by 20-30%. The yield of steel was increased by 0,1-0,3%, the steel temperature on tap was decreased by 10-25% the specific expense of cast iron was decreased by 2-4 kg/t, the ferroalloy expense was reduced by 3-8%. The results may be use in steelmakingAvailable from VNTIC / VNTIC - Scientific & Technical Information Centre of RussiaSIGLERURussian Federatio

    Plasma formation in noncircular capillary discharges (Conference Presentation)

    No full text
    For several decades the capillary discharges have been under intensive investigations due to various promising applications, e.g. for the laser electron accelerators as well as for the X-ray lasers [1,2]. A major portion of the experiments were done with circular cross-section capillaries. An appropriate theoretical and numerical study of circular capillaries can be greatly simplified to a 1D model [3] assuming rotational and axial symmetries of the plasma flow in a long thin channel. On the other hand, studying capillaries with non-circular cross-section [4], which have been attracting substantially less attention, requires more complicated 2D models. Such capillaries, for example, square one, possess several advantages related to their fabrication as well as for plasma diagnostics The aim of our work is to compare the plasma density and temperature distributions formed at the quasistationary stage of the discharge. We present the results of MHD simulations of hydrogen-filled capillary discharges with circular and rectangular cross-sections under almost the same conditions characterizing the initial configurations and the external electric circuit. The simulation parameters are choosen to correspond to the capillary discharge based waveguide for the laser wakefield accelerator [5]. Bibliography [1] Leemans W. P. et al 2014 Phys. Rev. Lett. 113 245002 [2] Benware B. R. et al 1998 Phys. Rev. Lett. 81 5804 [3] Bobrova N. A. et al 2001 Phys. Rev. E 65 016407 [4] Gonsalves A. J. et al 2007 Phys. Rev. Lett. 98 025002 [5] Esarey E. et al 2009 Rev. Mod. Phys. 81 122
    corecore