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Institute for Mathematical Modelling, Russian Academy of Sciences
Miusskaya Sq. 4-A, 125047 Moscow, Russia
E-mail: {gasilov, boldar, bsn}@imamod.ru

The subject of this paper is the computer simulation of transient processes in strongly radia-
tive plasma, that refers to solving the problems of radiative magnetohydrodynamics (MHD).
The program system MARPLE developed in IMM RAS is described, where the application of
OOP and parallel computing is emphasized. The strategy and scheme of code parallelizing are
explained, with the outcome being presented in the results of practical computations.

1 Introduction

Modern problems in pulsed-power energetics issue a real challenge to the computer sim-
ulation theory and practice. High-performance computing is a promising technology for
modelling complex multiscale nonlinear processes such as transient flows of strongly ra-
diative multicharged plasmas. An essential part of such numerical investigations is devoted
to computer simulation of pinches resulted from electric explosion of cold matter, e.g. gas-
puff jets, foam strings, or metallic wire arrays. These investigations were significantly
stimulated by impressive results in the soft X-ray yield produced by wire cascades or dou-
ble arrays obtained in Sandia National Laboratory, US1. The goal of numerical research in
pulsed-power is to study the evolution of very intensive transient electric discharges and to
perform a multiparametric optimization of future experimental schemes.

2 Mathematical Model and Numerical Methods

Numerical modelling of strongly radiative plasma flows goes along with development and
sophistication of research codes. This paper concerns the code MARPLE (Magnetically
Accelerated Radiative PLasma Explorer) created in the Institute for Mathematical Mod-
elling, RAS2. MARPLE performs calculations in terms of cylindrical (r, z) frame of refer-
ence, while (r, ϕ) or Cartesian (x, y) geometry is also available. A plasma flow is consid-
ered in the single-fluid magnetohydrodynamics model given by the well-known theory of
Braginsky. The MHD equations are written in a so-called 2.5-dimensional fashion, where
the flowfield vectors are presented by all three components: velocity ~w = (wr, wϕ, wz),
magnetic inductance ~B = (Br, Bϕ, Bz), and electric intensity ~E = (Er, Eϕ, Ez). The
anisotropy of dissipative processes in presence of magnetic field is taken into account. The
energy balance is described in terms of the electron-ion-radiation relaxation. The govern-
ing system of equations includes the radiative transport equation for spectral intensity, and
is completed by data bases and/or analytical description of plasma state, coefficients of
transport processes, spectral opacities and emissivities.
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Depending on the studied problem the governing system can also be supplemented by
an equation describing electric current evolution for the whole electric circuit. For a typical
pulsed-power problem the circuit includes an electric generator, current supply facilities,
and a discharge chamber.

2.1 Governing System of Equations for 2-Temperature MHD

Non-dissipative MHD:
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2.2 The Physical Splitting Scheme and Numerical Algorithms

Non-dissipative MHD Dissipative processes
Magnetic field diffusion, Radiative energy transfer
heat transfer, electron-ion

exchange, Joule heat
Local processes Quasi-local processes Non-local processes
Explicit scheme Implicit scheme Explicit fractional-step scheme

High-res. TVD scheme Integro-interpolation Characteristic scheme
with flux correction finite volume schemes

Time advance: 2nd order predictor-corrector scheme
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The code provides for the problem solution in a complex geometry domain with use of
unstructured triangular and quadrilateral meshes where all physical variables are stored at
the mesh vertices (nonstaggered storage). The conservation laws for mass, momentum,
and energy are approximated by means of the finite volumes technique. In the current
version of code the finite volumes are formed by modified Voronoi diagrams. An example
of computational mesh and finite volumes is presented below in Fig. 1.

The MHD system is solved by the generalized TVD Lax-Friedrichs scheme which was
developed for the unstructured mesh applications3. For the case of regular triangulation
this scheme ensures the second order approximation of spatial derivatives (the third or-
der is possible with a special choice of the antidiffusion limiters). For solving parabolic
equations, describing magnetic diffusion and conductive heat transfer, we developed new
finite-volume schemes constructed by analogy with the mixed finite-element method. The
time-advance integration is explicit, the second approximation order being achieved due to
the predictor-corrector procedure. The time step is restricted by the Courant criterion.

2.3 Radiation Transport

Radiative energy transfer is described by the equation for spectral radiation intensity. In
practice, calculations are performed via multi-range spectral approximation. We solve the
equation by means of a semi-analytical characteristic interpolation algorithm constructed
on the base of Schwarzschild-Schuster approximation. The analytical solution along a
characteristic direction is constructed by means of the forward-backward angular ap-
proximation to the photon distribution function4, 5. The two-group angular splitting gives
us the analytical expression for radiation intensity dependent on opacity and emissivity
coefficients. The energy exchange between the radiation field and the gas is taken into
account via radiative flux divergence, which is incorporated into the energy balance as a
source function (GR in the above system).

The transport equation for quasistationary radiation field in cylindrical geometry:
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Figure 1. Fragments of the triangular mesh with finite volumes and of the grid of rays.

For the purpose of radiative energy transfer calculation a special grid of characteris-
tics is constructed in the computational area. This grid is comprised by a number of sets
(families) of parallel lines and is further referred to as the grid of rays. Each set of rays is
characterized by the angle of inclination to coordinate axes and by spatial density of rays.
The grid of rays introduces some discretization of computational domain in the plane (r, z)
and with respect to the angle θ (0 ≤ θ < π), that is required for numerical integration of
the radiation transport equation according to the above described model. The grid of rays
is superimposed on the initial computational mesh designed for MHD and heat transfer
computations. A fragment of the grid (12 angle sectors) is shown in Fig. 1.

3 Parallel Implementation

All in all, the described sort of problems is computationally very hard, due to the big
number of involved physical processes and corresponding equations. It consumes substan-
tial amounts of processing time even on meshes which might look rather small for some
other commonly known problems. At this, we often need to carry out quite long computa-
tions, because processes under investigation are inherently time-dependent. And industrial
applications usually require numerous series of similar computations. So it makes code
parallelization for us not only challenging, but naturally highly desirable.

3.1 Parallelism & C++

Certain specificity of introducing parallelism into a program complex in our case relates
to the object-oriented nature of MARPLE code, which essentially employs C++ language
facilities, such as polymorphism, encapsulation, inheritance, and parametric programming.

Our data model takes its origin in the finite-element technique and provides a descrip-
tion of geometrical and topological properties for computational domains as well as for
numerical meshes. Special data structures based on the concept of topological complex
have been elaborated to provide problem statement in an arbitrary domain, and for han-
dling unstructured meshes, including dynamic mesh changes. From some point, the pro-
gramming language C++ was chosen for further elaboration of MARPLE codes, because
it provides the most convenient way to implement data structures for handling dynamic
unstructured meshes. Besides, the program implementation of various types of boundary
conditions, equations of state, and some other physical elements of the model, can be real-
ized in a natural way by use of inheritance and virtual functions. Also, specialized classes
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have been developed for handling data tables, comprising parameters of ionization, elec-
tric conductivity, thermodynamic and optical properties. The C++ language and, on the
whole, the object-oriented approach, simplifies the creation and further development of
large complicated computer codes, especially in case of team development.

When the challenge to parallelize the algorithm arises, the necessity to modify the
data structures normally appears too. Some of the above mentioned structures have to be
adapted to allow for parallel computations and data exchanges, taking into account also
the requirement of keeping interprocessor communication adequately small. Although, as
a matter of fact, many of the classes and functions can be used in each branch of parallel
code as well as in a usual sequential code.

For the problems like those described above and solved on triangular meshes, the geo-
metrical parallelism is commonly used. It implies that each branch of the code processes a
subset of computational mesh, while the data exchanges provide the possibility of compu-
tations in the vicinity of “inter-branch” bounds. In case of explicit schemes on unstructured
meshes it means that each branch of the code stores two types of the computational mesh
elements. The “real” elements require regular computations specified by the used scheme,
while the “fictive” elements are the images of some “real” elements processed by another
branch, and the data in these “fictive” elements are not computed but received from that
branch. The “fictive” elements form “margins” along the inter-branch bounds.

It should be noted that the “fictive” elements and the “margins” concepts may be used
as well in a single-branch (sequential) code for problems with some spatial symmetry
(problems with translational or rotational periodicity). The “fictive” elements in this case
are the images of some “real” elements in the geometrical transformation, with respect
to which the problem is symmetrical. But the principal idea remains the same: instead
of regular computations in a “fictive” element, the data associated with this element are
transferred from the element-preimage.

So, in case of using geometrical parallelism, the data structures describing compu-
tational domains and meshes have to be modified, in order to handle the “fictive” mesh
elements and encapsulate the methods for proper data exchanges, when needed.

3.2 Radiation Transport
Highly accurate simulation of radiative energy transfer, including detailed reproducing of
the radiation spectrum, is among the most important requirements to the developed code.
The reason is its great significance to the design of powerful X-ray pulse sources. Thereto,
the entire spectrum is divided into a number of frequency ranges (from tens to hundreds). It
is necessary to reconstruct the radiation field with respect to its angular distribution for each
frequency range. So, the radiative transfer is calculated independently in each waveband,
and then the corresponding results are summarized. Besides, as a rule, the grid of rays
has the number of points much bigger than in the basic mesh. This is why the radiation
transport computation is one of the most laborious steps in radiative MHD simulations.
Profilings run at a monoprocessor computer showed that sometimes up to 80-90% of the
total processing time may be spent on the radiative transfer computation, depending on a
particular problem. For instance, typical figures corresponding to our benchmark problem
(see Section 4 below) with 100 frequency ranges are shown in Table 1.

Therefore, the radiation transport was naturally chosen as our primary target for par-
allelizing. Now it’s time to note, that in the above shown scheme of physical processes
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Ideal MHD: 3.4%
Magnetic field diffusion: 4.7%
Heat conduction + e-i exchange: 3.0%
Joule heat: 4.0%
Radiative energy transfer: 84.9%

Table 1. Computational costs on different physical processes.

radiative transport stands apart in certain sense, because its most computations are per-
formed on a special grid of rays, different from the basic grid, and have an essentially
non-local character. Hence, domain decomposition and geometrical parallelism seem to
be not applicable here. We chose another way of distributing computational load, which
appears more natural and usable in this case. Indeed, the frequency ranges model requires
repeating large volume of uniform computation with different sets of opacity and emissiv-
ity values for each range. It seems appropriate to carry out these computations concurrently
on several processors, and then to collect the results by simple summation, using the fact
that all frequency ranges produce uniform and independent contributions to the total radia-
tive energy fluxes.

Thus, the whole volume of computation within each time step can be divided into
two principal parts: the computations performed on the basic triangular mesh, and the
computations performed on the grid of rays. Since currently the parallelization of the
former part is not yet finished, the same calculations in this part are carried out by all
processors simultaneously. In fact, this doesn’t lead to any time loss, but helps to avoid any
data exchange before the second part begins, as all processors will have exactly the same
data by that moment. Then computations along the rays are performed in parallel, each
processor calculating energy fluxes in its own set of wavebands. As these computations
are well independent, no data related to the rays or ray points need to be exchanged. It
makes this parallel computation quite efficient, provided that the number of processors is
the divisor of the number of wavebands. However, to finalize this part, the radiative energy
density must be summed up over all frequency ranges, so the global data collection is once
required, actually in a scale of one variable defined on the triangular mesh (GR).

3.3 C++ & MPI

Parallel computations on our cluster systems (with distributed memory architecture) were
organized by means of the MPI framework, which is well efficient and highly portable
as the prevalent today standard for message-passing communication model. However,
the original library doesn’t make use of OOP capabilities, that could be quite profitable
in simplifying parallel programming6. On the other hand, the library contains plenty of
efficient specialized functions with numerous options giving great flexibility to users, but
practically many researchers tend to use some very limited subset of this richness for their
particular computational problems. In order to simplify library usage and bring it closer
to the C++ character of MARPLE codes, an intermediate interface has been elaborated,
that hides the less exploitable details of the library but at the same time conveys some
appropriate amount of flexibility provided by MPI to the core computational codes. As
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a result, the interprocessor communications are organized in the overall manner of C++
paradigm, i.e. by using some set of datatype-secure polymorphic functions, convenient for
our actual needs. E.g. asynchronous Send calls will look like the following:

aSend( int dest proc, DataType *data ptr, int data count );
aSend( int dest proc, DataType &variable );

However, this is yet our first approach realized for the moment. In fact, the send-
ing/receiving functions are called now directly from modules that implement numerical
methods and schemes. The next step will be encapsulating such calls into classes that are
responsible for data description and storage, so that a command given by a computing
module would be not to send/receive/share some particular data array, but to exchange or
refresh, or acquire any specific data structures, like those described above in Section 3.1.

4 Practical Results

The program codes have been proved in practical computations on two cluster systems
currently available in IMM RAS. Both systems are Linux-driven self-made clusters based
on the Intel platforma. The results obtained in a set of test computations are presented in
Table 2. Here, the triangular mesh contains 21221 node, and the grid of rays consists of
6160 rays with total of 1054553 points for computation. The number of frequency ranges
for this series of computations was taken 100. Times given in seconds correspond to one
time step calculations on our single-core Xeon-based cluster.

Number of processors
1 2 4 10 20

Full time (100%) 48.82 sec 29.51 sec 18.76 sec 13.56 sec 11.16 sec
Grid of rays 41.44 (85%) 20.8 (70%) 10.1 (54%) 3.94 (29%) 1.89 (17%)

Data exchange 0 (0%) 0.29 (1.0%) 0.51 (2.7%) 0.55 (4.1%) 0.58 (5.2%)
Speed-up on rays 1.00 1.99 4.10 10.52 21.90
Overall speed-up 1.00 1.65 2.60 3.60 4.37
Overall efficiency 100% 83% 65% 36% 22%

Table 2. Timings of practical computations.

As it can be clearly seen from the table, the overall efficiency rapidly falls down with
the growing number of processors, although the part of computation run on the grid of
rays exhibits a perfect linear acceleration. This is an evident consequence of the fact that
the latter is the only part of computation actually parallelized by now. So even if on a
single processor it takes 85% of the total time cost, this proportion tends to change very
quickly. Actually, for the small numbers of frequency ranges the parallelization gives here
very limited effect, e.g. initially in the above problem with 20 wavebands the contribution

aThe first cluster consists of 26 modules, each of them containing two Intel Xeon 3 GHz processors and 2 Gb of
RAM, all modules being connected by Gigabit Ethernet network. The second cluster is similarly comprised by
14 dual-processor modules with 4 Gb RAM, where each processor is the dual-core Xeon 2.66 GHz.
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of calculations along the rays into the whole computation time was only about 50%, so
it would be hard to reach even the acceleration of factor 2. Obviously, doing only some
distinct part of computations in parallel is not enough, though we must admit that even
such limited acceleration is quite useful for us in practice.

Thus, from this point we are going to parallelize the rest of our code. First of all,
we think to employ physical splitting scheme further, so that to parallelize computations
on different physical processes independently, using different techniques (e.g. for explicit
and implicit schemes), and dedicating different groups of processors for these tasks. The
nearest stage of code development is to detach hyperbolic processes from parabolic ones,
and to organize additional iterations within the latter group, together with radiative transfer.
Hence, we suppose that parallelizing radiation transport computation has been only the first
though important step towards making the whole MARPLE code parallel.

5 Conclusions

It proved possible to make good use of the proposed technique in numerical simulation of
heterogeneous liners implosion with powerful X-ray pulse generation. The corresponding
experiments are performed at “ANGARA 5-1” facility (TRINITI, Troitsk, Moscow reg.,
Russia)7. Parallel computing technology applied to the radiative energy transfer calcula-
tion helped us to reduce the total processing time by factor of 2 to 4. This is a significant
practical achievement, since for the experiment scheme optimization a big series of similar
numerical simulations is actually needed. Another concurrent advantage is that the number
of ranges in a spectrum can be increased, that gives immediate effect on the accuracy and
quality of numerical solutions. For example, in the above mentioned numerical experi-
ments initially only 20 frequency ranges were differentiated, and for parallel computations
this number was notably increased to one hundred.
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