53 research outputs found

    HoMEcare aRm rehabiLItatioN (MERLIN): telerehabilitation using an unactuated device based on serious games improves the upper limb function in chronic stroke

    Get PDF
    HoMEcare aRm rehabiLItatioN (MERLIN) is an unactuated version of the robotic device ArmAssist combined with a telecare platform. Stroke patients are able to train the upper limb function using serious games at home. The aim of this study is to investigate the effect of MERLIN training on the upper limb function of patients with unilateral upper limb paresis in the chronic phase of stroke (> 6 months post stroke). Patients trained task specific serious games for three hours per week during six weeks using an unactuated version of a robotic device. Progress was monitored and game settings were tailored through telerehabilitation. Measurements were performed six weeks pre-intervention (T0), at the start (T1), end (T2) and six weeks post-intervention (T3). Primary outcome was the Wolf Motor Function Test (WMFT). Secondary outcomes were other arm function tests, quality of life, user satisfaction and motivation.This research is part of MERLIN project (19094 and 20649) that has received funding from EIT Health. EIT Health is supported by the European Institute of Innovation and Technology (EIT), a body of the European Union receives support from the European Union´s Horizon 2020 Research and innovation program

    Golexanolone improves fatigue, motor incoordination and gait and memory in rats with bile duct ligation

    Get PDF
    \ua9 2023 The Authors. Liver International published by John Wiley & Sons Ltd.Background and Aims: Many patients with the chronic cholestatic liver disease primary biliary cholangitis (PBC) show fatigue and cognitive impairment that reduces their quality of life. Likewise, rats with bile duct ligation (BDL) are a model of cholestatic liver disease. Current PBC treatments do not improve symptomatic alterations such as fatigue or cognitive impairment and new, more effective treatments are therefore required. Golexanolone reduces the potentiation of GABAA receptors activation by neurosteroids. Golexanolone reduces peripheral inflammation and neuroinflammation and improves cognitive and motor function in rats with chronic hyperammonemia. The aims of the present study were to assess if golexanolone treatment improves fatigue and cognitive and motor function in cholestatic BDL rats and if this is associated with improvement of peripheral inflammation, neuroinflammation, and GABAergic neurotransmission in the cerebellum. Methods: Rats were subjected to bile duct ligation. One week after surgery, oral golexanolone was administered daily to BDL and sham-operated controls. Fatigue was analysed in the treadmill, motor coordination in the motorater, locomotor gait in the Catwalk, and short-term memory in the Y-maze. We also analysed peripheral inflammation, neuroinflammation, and GABAergic neurotransmission markers by immunohistochemistry and Western blot. Results: BDL induces fatigue, impairs memory and motor coordination, and alters locomotor gait in cholestatic rats. Golexanolone improves these alterations, and this was associated with improvement of peripheral inflammation, neuroinflammation, and GABAergic neurotransmission in the cerebellum. Conclusion: Golexanolone may have beneficial effects to treat fatigue, and motor and cognitive impairment in patients with the chronic cholestatic liver disease PBC

    Self-diffusion in dense granular shear flows

    Full text link
    Diffusivity is a key quantity in describing velocity fluctuations in granular materials. These fluctuations are the basis of many thermodynamic and hydrodynamic models which aim to provide a statistical description of granular systems. We present experimental results on diffusivity in dense, granular shear in a 2D Couette geometry. We find that self-diffusivities are proportional to the local shear rate with diffusivities along the mean flow approximately twice as large as those in the perpendicular direction. The magnitude of the diffusivity is D \approx \dot\gamma a^2 where a is the particle radius. However, the gradient in shear rate, coupling to the mean flow, and drag at the moving boundary lead to particle displacements that can appear sub- or super-diffusive. In particular, diffusion appears superdiffusive along the mean flow direction due to Taylor dispersion effects and subdiffusive along the perpendicular direction due to the gradient in shear rate. The anisotropic force network leads to an additional anisotropy in the diffusivity that is a property of dense systems with no obvious analog in rapid flows. Specifically, the diffusivity is supressed along the direction of the strong force network. A simple random walk simulation reproduces the key features of the data, such as the apparent superdiffusive and subdiffusive behavior arising from the mean flow, confirming the underlying diffusive motion. The additional anisotropy is not observed in the simulation since the strong force network is not included. Examples of correlated motion, such as transient vortices, and Levy flights are also observed. Although correlated motion creates velocity fields qualitatively different from Brownian motion and can introduce non-diffusive effects, on average the system appears simply diffusive.Comment: 13 pages, 20 figures (accepted to Phys. Rev. E

    Instability of short arm of acrocentric chromosomes : Lesson from non-acrocentric satellited chromosomes. Report of 24 unrelated cases

    Get PDF
    Satellited non-acrocentric autosomal chromosomes (ps-qs-chromosomes) are the result of an interchange between sub- or telomeric regions of autosomes and the p arm of acrocentrics. The sequence homology at the rearrangement breakpoints appears to be, among others, the most frequent mechanism generating these variant chromosomes. The unbalanced carriers of this type of translocation may or may not display phenotypic abnormalities. With the aim to understand the causative mechanism, we revised all the ps-qs-chromosomes identified in five medical genetics laboratories, which used the same procedures for karyotype analysis, reporting 24 unrelated cases involving eight chromosomes. In conclusion, we observed three different scenarios: true translocation, benign variant and complex rearrangement. The detection of translocation partners is essential to evaluate possible euchromatic unbalances and to infer their effect on phenotype. Moreover, we emphasize the importance to perform both, molecular and conventional cytogenetics methods, to better understand the behavior of our genome

    Generation of the Rubinstein-Taybi syndrome type 2 patient-derived induced pluripotent stem cell line (IAIi001-A) carrying the EP300 exon 23 stop mutation c.3829A > T, p.(Lys1277*)

    Get PDF
    Rubinstein-Taybi syndrome (RSTS) is a neurodevelopmental disorder characterized by growth retardation, skeletal anomalies and intellectual disability, caused by heterozygous mutation in either the CREBBP (RSTS1) or EP300 (RSTS2) genes. We generated an induced pluripotent stem cell line from an RSTS2 patient's blood mononuclear cells by Sendai virus non integrative reprogramming method. The iPSC line (IAIi001RSTS2-65-A) displayed iPSC morphology, expressed pluripotency markers, possessed trilineage differentiation potential and was stable by karyotyping. Mutation and western blot analyses demonstrated in IAIi001RSTS2-65-A the patient's specific non sense mutation in exon 23 c.3829A > T, p.(Lys 1277*) and showed reduced quantity of wild type p300 protein

    Hydrodynamics and transport coefficients for Granular Gases

    Full text link
    The hydrodynamics of granular gases of viscoelastic particles, whose collision is described by an impact-velocity dependent coefficient of restitution, is developed using a modified Chapman-Enskog approach. We derive the hydrodynamic equations and the according transport coefficients with the assumption that the shape of the velocity distribution function follows adiabatically the decaying temperature. We show numerically that this approximation is justified up to intermediate dissipation. The transport coefficients and the coefficient of cooling are expressed in terms of the elastic and dissipative parameters of the particle material and by the gas parameters. The dependence of these coefficients on temperature differs qualitatively from that obtained with the simplifying assumption of a constant coefficient of restitution which was used in previous studies. The approach formulated for gases of viscoelastic particles may be applied also for other impact-velocity dependencies of the restitution coefficient.Comment: 16 pages, 4 figure

    Stylet penetration of Cacopsylla pyri; an electrical penetration graph (EPG) study

    No full text
    Detailed information on plant penetration activities by pear psylla Cacopsylla pyri L. (Hemiptera Psyllidae) is essential to study phytoplasma transmission of “Candidatus Phytoplasma pyri” responsible of pear decline disease (PD) and to trace and evaluate resistant traits in new pear tree selections for advanced breeding programs. The electrical penetration graph technique or (full) EPG may relevantly contribute to this knowledge. C. pyri EPG waveforms were characterized on basis of amplitude, frequency, voltage level, and electrical origin. Additionally, stylet tracks and the putative location of stylet tips in the plant tissue were histologically related to EPG waveforms by light and transmission electron microscopy observations after stylectomy. More than one waveform occurred in the same tissue: PA, PB, PC1 and PC2 were all detected in the mesophyll, and PE1 and PE2 were both recorded in the phloem. Waveform PE1 was always preceded by transient waveform PD, as previously described in other psyllids. Interestingly, no brief intracellular punctures (potential drop waveforms) were observed during plant penetration, opposite of what is usually recorded in aphids and other Sternorrhyncha

    Stylet penetration of Cacopsylla pyri; an electrical penetration graph (EPG) study.

    No full text
    Detailed information on plant penetration activities by pear psylla Cacopsylla pyri L. (Hemiptera Psyllidae) is essential to study phytoplasma transmission of \u2018\u2018Candidatus Phytoplasma pyri\u2019\u2019 responsible of pear decline disease (PD) and to trace and evaluate resistant traits in new pear tree selections for advanced breeding programs. The electrical penetration graph technique or (full) EPG may relevantly contribute to this knowledge. C. pyri EPG waveforms were characterized on basis of amplitude, frequency, voltage level, and electrical origin. Additionally, stylet tracks and the putative location of stylet tips in the plant tissue were histologically related to EPG waveforms by light and transmission electron microscopy obser-vations after stylectomy. More than one waveform occurred in the same tissue: PA, PB, PC1 and PC2 were all detected in the mesophyll, and PE1 and PE2 were both recorded in the phloem. Waveform PE1 was always preceded by transient waveform PD, as previously described in other psyllids. Interestingly, no brief intracellular punctures (potential drop waveforms) were observed during plant penetration, opposite of what is usually recorded in aphids and other Sternorrhyncha
    • …
    corecore