45 research outputs found

    Stable isotope‐based paleoaltimetry,

    Get PDF
    Abstract The quantitative estimation of paleoaltitude has become an increasing focus of Earth scientists because surface elevation provides constraints on the geodynamic mechanisms operating in mountain belts, as well as the influence of mountain belt growth on regional and global climate. The general observation of decreasing δ 18 O and δ 2 H values in rainfall as elevation increases has been used in both empirical and theoretical approaches to estimate paleoelevation. These studies rely on the preservation of ancient surface water compositions in authigenic minerals to reconstruct the elevation at the time the minerals were forming. In this review we provide a theory behind the application of stable isotope-based approaches to paleoaltimetry. We apply this theory to test cases using modern precipitation and surface water isotopic compositions to demonstrate that it generally accords well with observations. Examples of the application of paleoaltimetry techniques to Himalaya-Tibet and the Andes are discussed with implications for processes that cause surface uplift

    Rise of the Andes

    Get PDF
    The surface uplift of mountain belts is generally assumed to reflect progressive shortening and crustal thickening, leading to their gradual rise. Recent studies of the Andes indicate that their elevation remained relatively stable for long periods (tens of millions of years), separated by rapid (1 to 4 million years) changes of 1.5 kilometers or more. Periodic punctuated surface uplift of mountain belts probably reflects the rapid removal of unstable, dense lower lithosphere after long-term thickening of the crust and lithospheric mantle

    Rapid regional surface uplift of the northern Altiplano plateau revealed by multiproxy paleoclimate reconstruction

    Get PDF
    The central Altiplano is inferred to have experienced ∼2.5±1km surface uplift between ∼10 and 6 Ma, while the southern Altiplano experienced a similar magnitude of surface uplift that began earlier, between ∼16 and 9 Ma. To properly constrain the along strike timing of the Altiplano plateau surface uplift, it is necessary to know how and when the northernmost part of the Altiplano plateau evolved. We reconstruct the paleoclimate and infer the corresponding paleoelevation from the Miocene–Pliocene deposits of the Descanso–Yauri basin (14–15°S) in the northernmost part of the Altiplano plateau using 4 different proxies, including carbonate clumped isotope composition (i.e., Δ_(47) values), carbonate δ^(18)O_c, leaf wax δD_(wax) and pollen assemblages from paleosol, lacustrine and palustrine carbonates and organic-rich sediments. The isotopic signatures reflect past climate conditions of mean annual air temperature (Δ_(47)) and meteoric water isotope values (δ^(18)O_c, δD_(wax)). Our results show that the northernmost plateau remained at low elevation (0.9±0.8 to 2.1±0.9km) until late Miocene time (∼9 Ma) characterized by ∼15 °C warmer than modern temperature (mean annual air temperature of 23±4°C, 2σ), low elevation vegetation and precipitation signature with reconstructed □ δ^(18)O_(mw) (VSMOW) of −8.3±2.0‰(2σ) from carbonate (δ^(18)O_c) and −8.6±1.8‰(2σ) from leaf wax (δD_(wax)). Modern elevations of 4 km were not reached until 5.4±1.0Ma, as indicated by a negative shift in δD_(wax) (VSMOW) from −143.4±12.8‰(2σ) to −209.2±21.1‰(2σ) between 9.1±0.7 and 5.4±1.0Ma. The timing of surface uplift of the northernmost Altiplano is consistent with the evidence for late Miocene surface uplift of the central Altiplano (16–19°S) between 10 and 6 Ma, and indicates that regional scale uplift in the northern–central plateau significantly postdates the onset of surface uplift in the southern Altiplano (19–22°S) between ∼16 and 9 Ma. These results are consistent with piecemeal removal of the lower dense lithosphere, combined with possible lower/middle crustal flow from south to north in the plateau acting as the main mechanisms for the formation of the Altiplano plateau

    Rapid regional surface uplift of the northern Altiplano plateau revealed by multiproxy paleoclimate reconstruction

    Get PDF
    The central Altiplano is inferred to have experienced ∼2.5±1km surface uplift between ∼10 and 6 Ma, while the southern Altiplano experienced a similar magnitude of surface uplift that began earlier, between ∼16 and 9 Ma. To properly constrain the along strike timing of the Altiplano plateau surface uplift, it is necessary to know how and when the northernmost part of the Altiplano plateau evolved. We reconstruct the paleoclimate and infer the corresponding paleoelevation from the Miocene–Pliocene deposits of the Descanso–Yauri basin (14–15°S) in the northernmost part of the Altiplano plateau using 4 different proxies, including carbonate clumped isotope composition (i.e., Δ_(47) values), carbonate δ^(18)O_c, leaf wax δD_(wax) and pollen assemblages from paleosol, lacustrine and palustrine carbonates and organic-rich sediments. The isotopic signatures reflect past climate conditions of mean annual air temperature (Δ_(47)) and meteoric water isotope values (δ^(18)O_c, δD_(wax)). Our results show that the northernmost plateau remained at low elevation (0.9±0.8 to 2.1±0.9km) until late Miocene time (∼9 Ma) characterized by ∼15 °C warmer than modern temperature (mean annual air temperature of 23±4°C, 2σ), low elevation vegetation and precipitation signature with reconstructed □ δ^(18)O_(mw) (VSMOW) of −8.3±2.0‰(2σ) from carbonate (δ^(18)O_c) and −8.6±1.8‰(2σ) from leaf wax (δD_(wax)). Modern elevations of 4 km were not reached until 5.4±1.0Ma, as indicated by a negative shift in δD_(wax) (VSMOW) from −143.4±12.8‰(2σ) to −209.2±21.1‰(2σ) between 9.1±0.7 and 5.4±1.0Ma. The timing of surface uplift of the northernmost Altiplano is consistent with the evidence for late Miocene surface uplift of the central Altiplano (16–19°S) between 10 and 6 Ma, and indicates that regional scale uplift in the northern–central plateau significantly postdates the onset of surface uplift in the southern Altiplano (19–22°S) between ∼16 and 9 Ma. These results are consistent with piecemeal removal of the lower dense lithosphere, combined with possible lower/middle crustal flow from south to north in the plateau acting as the main mechanisms for the formation of the Altiplano plateau

    The growth of northeastern Tibet and its relevance to large-scale continental geodynamics: A review of recent studies

    Get PDF
    Recent studies of the northeastern part of the Tibetan Plateau have called attention to two emerging views of how the Tibetan Plateau has grown. First, deformation in northern Tibet began essentially at the time of collision with India, not 10–20 Myr later as might be expected if the locus of activity migrated northward as India penetrated the rest of Eurasia. Thus, the north-south dimensions of the Tibetan Plateau were set mainly by differences in lithospheric strength, with strong lithosphere beneath India and the Tarim and Qaidam basins steadily encroaching on one another as the region between them, the present-day Tibetan Plateau, deformed, and its north-south dimension became narrower. Second, abundant evidence calls for acceleration of deformation, including the formation of new faults, in northeastern Tibet since ~15 Ma and a less precisely dated change in orientation of crustal shortening since ~20 Ma. This reorientation of crustal shortening and roughly concurrent outward growth of high terrain, which swings from NNE-SSW in northern Tibet to more NE-SW and even ENE-WSW in the easternmost part of northeastern Tibet, are likely to be, in part, a consequence of crustal thickening within the high Tibetan Plateau reaching a limit, and the locus of continued shortening then migrating to the northeastern and eastern flanks. These changes in rates and orientation also could result from removal of some or all mantle lithosphere and increased gravitational potential energy per unit area and from a weakening of crustal material so that it could flow in response to pressure gradients set by evolving differences in elevation

    Rapid Uplift of the Altiplano Revealed Through ^(13)C-^(18)O Bonds in Paleosol Carbonates

    No full text
    The elevation of Earth's surface is among the most difficult environmental variables to reconstruct from the geological record. Here we describe an approach to paleoaltimetry based on independent and simultaneous determinations of soil temperatures and the oxygen isotope compositions of soil waters, constrained by measurements of abundances of ^(13)C-^(18)O bonds in soil carbonates. We use this approach to show that the Altiplano plateau in the Bolivian Andes rose at an average rate of 1.03 ± 0.12 millimeters per year between ~10.3 and ~6.7 million years ago. This rate is consistent with the removal of dense lower crust and/or lithospheric mantle as the cause of elevation gain
    corecore