491 research outputs found

    Genome-based characterization of Yersinia enterocolitica

    Get PDF

    A dialogue between mathematics education and special education: ethics, inclusion and differentiation for all

    Get PDF
    International audienceEthical issues play an important role in moulding the philosophy of mathematics education. The present study spells out ethical features of mathematical learning in terms of inclusion. We present the OPEN-MATH project that aims at accomplishing inclusive mathematics learning environments and a teaching learning model based in such a framework

    Genome-based characterization of Yersinia enterocolitica

    Get PDF

    Tracing genomic variations in two highly virulent Yersinia enterocolitica strains with unequal ability to compete for host colonization

    Get PDF
    Background: Yersinia enterocolitica is a gastrointestinal foodborne pathogen found worldwide and which especially affects infants and young children. While different bioserotypes have been associated with varying pathogenicity, research on Y. enterocolitica is mainly conducted on the highly virulent mouse-lethal strains of biotype 1B and serotype O:8. We demonstrate here that two Y. enterocolitica bioserotype 1B/O:8 strains, 8081 and WA-314, display different virulence and fitness properties in a mouse model. In vivo co-infection experiments revealed that strain WA-314 overcomes strain 8081 in the colonization of spleen and liver. To trace the reasons of this incongruity, we present here the first high-quality sequence of the whole genome of strain WA-314 and compare it to the published genome of strain 8081. Results: Regions previously accepted as unique to strain 8081, like the YAPI and YGI-3 genomic islands, are absent from strain WA-314, confirming their strain-specificity. On the other hand, some fitness- and bacterial competition-associated features, such as a putative colicin cluster and a xenobiotic-acyltransferase-encoding gene, are unique to strain WA-314. Additional acquisitions of strain WA-314 are seven prophage-like regions. One of these prophages, the 28-kb P4-like prophage YWA-4, encodes a PilV-like protein that may be used for adhesion to and invasion of the intestinal cells. Furthermore, a putative autotransporter and two type 1 fimbrial proteins of strain WA-314 show a sequence similarity < 50% with the orthologous proteins in strain 8081. The dissimilar sequences of these proteins indicate possible different functions or interaction modes, reflecting the specific adhesion properties of Y. enterocolitica strains 8081 and WA-314 and thus the different efficiency of host colonization. Further important differences were found in two pYV plasmid-encoded virulence factors, YopM and YscP. The impact of these differences on virulence is discussed. Conclusions: Our study emphasizes that the virulence of pathogens can be increased, by acquiring new genes and/or improving the function of essential virulence proteins, resulting in permanently hyper-virulent strains. This work also highlights the importance of addressing genetic and phenotypic variations among closely related bacterial strains, even those belonging to the same bioserotype

    Reducing energy demand by the combined application of advanced control strategies in a full scale WWTP

    Get PDF
    Abstract Two advanced control strategies were applied in the secondary and tertiary stages, respectively, of a full scale wastewater treatment plant (WWTP). This has a nominal capacity of 330,000 population equivalent (PE), a complex configuration (having been upgraded several times through the years), and it faces significant seasonal load fluctuations (being located in a touristic area, in Northern Italy). The lifting station of the tertiary treatments (devoted to phosphorus precipitation and UV disinfection) was optimized by adjusting the pumped flowrate, depending on influent phosphorus concentration. A preliminary simulation showed that a 15% reduction of pumping energy could be achieved. This result was confirmed by field measurements. Moreover, a fuzzy control system was designed and applied to one of the six parallel nitrification reactors, yielding a reduction of more than 25% of the power requirement for aeration. Overall, the combined application of the two controllers led to a 7% reduction of the total energy consumption of the plant. This result is particularly promising given that the fuzzy controller was applied only to one of six biological reactors

    Multi-COBS: A Novel Algorithm for Byte Stuffing at High Throughput

    Get PDF
    Framing methods are used to break a data stream into packets in most digital communications. The use of a reserved symbol to denote the frame boundaries is a popular practice. This end-of-frame (EOF) marker should be removed from the packet content in a reversible manner. Many strategies, such as the bit and byte stuffing processes employed by high-level data link control (HDLC) and Point-to-Point Protocol (PPP), or the Consistent Overhead Byte Stuffing (COBS), have been devised to perform this goal. These bit and byte stuffing algorithms remove the reserved EOF marker from the packet payload and replace it with some extra information that can be used to undo the action later. The amount of data added is called overhead and is a figure-of-merit of such algorithms, together with the encoding and decoding speed. Multi-COBS, a new byte stuffing algorithm, is presented in this paper. Multi-COBS provides concurrent encoding and decoding, resulting in a performance improvement of factor four or eight in common word-based digital architectures while delivering an average and worst-case overhead equivalent to the state-of-the-art. On the reference 28-nanometer field programmable gate array (FPGA) (Artix-7), Multi-COBS achieves a throughput of 6.6 Gbps, instead of 1.7 Gbps of COBS. Thanks to its parallel elaboration capability, Multi-COBS is ideal for digital systems built in programmable logic as well as modern computers
    • …
    corecore