199 research outputs found
An empirical analysis of supply and manufacturing risk and business performance: A Chinese manufacturing supply chain perspective
Purpose – This study explores the importance and impact of supply and manufacturing
risk management upon business performance within the context of Chinese
manufacturing supply chains.
Design/Methodology/Approach – A two phased multi-method approach was adopted,
which included a survey questionnaire to practitioners in Chinese manufacturing supply
chains followed by semi-structured interviews. The findings included 103 valid survey
responses complemented by six semi-structured interviews.
Findings – The results indicate that in Chinese manufacturing context supply risk and
manufacturing risk management are both vital for business performance. A high
correlation between business and manufacturing risk management performance exists,
however no significant impact of supplier dependency, systematic purchasing, maturity
of production and supply chain, and human resources was found despite previously these
elements being regarded as key influencers for supply and manufacturing risk
management performance. The Chinese manufacturing supply chain indicated that
elements such as the supplier and customer orientation, flexibility, manufacturing and
supply risk highly connotes with business performance.
Theoretical/Practical implications – In the current unpredictable and volatile business
environment the competitiveness of manufacturing supply chains to a large extent depend
on their ability to identify, assess and manage the manufacturing and supply risks. The
findings of this study will assist supply chain managers in taking decision on
manufacturing and supply risk management and reducing the uncertainty upon their
business performance.
Originality/value – The supply chain risk has been widely explored within the context of
individual case studies, or standalone models focusing on either supply or manufacturing
risk in supply chains, however to what extent this has been applicable to a wider context
and its impact upon business process has not been explored. Hence, this study
simultaneously has analysed manufacturing risk and supply risk and its impact upon
Chinese manufacturing supply chains business performance. Moreover, this study uses a
combination of quantitative and qualitative methods, which is often limited in this area.
Finally, the institutional theory lens offers novel insights in better understanding the
factors that can affect the impact of supply and manufacturing risk management upon
business performance in those contexts, such as China, where the institutional aspect
presents specific features
The COS-Holes Survey: Connecting Galaxy Black Hole Mass with the State of the CGM
We present an analysis of Hubble Space Telescope COS/G160M observations of C IV in the inner circumgalactic medium (CGM) of a novel sample of eight z ∼ 0, L ≈ L ⋆ galaxies, paired with UV-bright QSOs at impact parameters (R proj) between 25 and 130 kpc. The galaxies in this stellar-mass-controlled sample (log10 M ⋆/M ⊙ ∼ 10.2-10.9 M ⊙) host supermassive black holes (SMBHs) with dynamically measured masses spanning log10 M BH/M ⊙ ∼ 6.8-8.4; this allows us to compare our results with models of galaxy formation where the integrated feedback history from the SMBH alters the CGM over long timescales. We find that the C IV column density measurements (N C IV; average log10 N C IV,CH = 13.94 ± 0.09 cm−2) are largely consistent with existing measurements from other surveys of N C IV in the CGM (average log10 N C IV,Lit = 13.90 ± 0.08 cm−2), but do not show obvious variation as a function of the SMBH mass. By contrast, specific star formation rate (sSFR) is highly correlated with the ionized content of the CGM. We find a large spread in sSFR for galaxies with log10 M BH/M ⊙ > 7.0, where the CGM C IV content shows a clear dependence on galaxy sSFR but not M BH. Our results do not indicate an obvious causal link between CGM C IV and the mass of the galaxy’s SMBH; however, through comparisons to the EAGLE, Romulus25, and IllustrisTNG simulations, we find that our sample is likely too small to constrain such causality
Recommended from our members
Glycaemic control in people with type 2 diabetes mellitus during and after cancer treatment: A systematic review and meta-analysis
Background
Cancer and Diabetes Mellitus (DM) are leading causes of death worldwide and the prevalence of both is escalating. People with co-morbid cancer and DM have increased morbidity and premature mortality compared with cancer patients with no DM. The reasons for this are likely to be multifaceted but will include the impact of hypo/hyperglycaemia and diabetes therapies on cancer treatment and disease progression. A useful step toward addressing this disparity in treatment outcomes is to establish the impact of cancer treatment on diabetes control.
Aim
The aim of this review is to identify and analyse current evidence reporting glycaemic control (HbA1c) during and after cancer treatment.
Methods
Systematic searches of published quantitative research relating to comorbid cancer and type 2 diabetes mellitus were conducted using databases, including Medline, Embase, PsychINFO, CINAHL and Web of Science (February 2017). Full text publications were eligible for inclusion if they: were quantitative, published in English language, investigated the effects of cancer treatment on glycaemic control, reported HbA1c (%/mmols/mol) and included adult populations with diabetes. Means, standard deviations and sample sizes were extracted from each paper; missing standard deviations were imputed. The completed datasets were analysed using a random effects model. A mixed-effects analysis was undertaken to calculate mean HbA1c (%/mmols/mol) change over three time periods compared to baseline.
Results
The available literature exploring glycaemic control post-diagnosis was mixed. There was increased risk of poor glycaemic control during this time if studies of surgical treatment for gastric cancer are excluded, with significant differences between baseline and 12 months (p < 0.001) and baseline and 24 months (p = 0.002).
Conclusion
We found some evidence to support the contention that glycaemic control during and/or after non-surgical cancer treatment is worsened, and the reasons are not well defined in individual studies. Future studies should consider the reasons why this is the case
Nascentome Analysis Uncovers Futile Protein Synthesis in Escherichia coli
Although co-translational biological processes attract much attention, no general and easy method has been available to detect cellular nascent polypeptide chains, which we propose to call collectively a “nascentome.” We developed a method to selectively detect polypeptide portions of cellular polypeptidyl-tRNAs and used it to study the generality of the quality control reactions that rescue dead-end translation complexes. To detect nascent polypeptides, having their growing ends covalently attached to a tRNA, cellular extracts are separated by SDS-PAGE in two dimensions, first with the peptidyl-tRNA ester bonds preserved and subsequently after their in-gel cleavage. Pulse-labeled nascent polypeptides of Escherichia coli form a characteristic line below the main diagonal line, because each of them had contained a tRNA of nearly uniform size in the first-dimension electrophoresis but not in the second-dimension. The detection of nascent polypeptides, separately from any translation-completed polypeptides or degradation products thereof, allows us to follow their fates to gain deeper insights into protein biogenesis and quality control pathways. It was revealed that polypeptidyl-tRNAs were significantly stabilized in E. coli upon dysfunction of the tmRNA-ArfA ribosome-rescuing system, whose function had only been studied previously using model constructs. Our results suggest that E. coli cells are intrinsically producing aberrant translation products, which are normally eliminated by the ribosome-rescuing mechanisms
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
Relief of Preintegration Inhibition and Characterization of Additional Blocks for HIV Replication in Primary Mouse T Cells
Development of a small animal model to study HIV replication and pathogenesis has been hampered by the failure of the virus to replicate in non-primate cells. Most studies aimed at achieving replication in murine cells have been limited to fibroblast cell lines, but generating an appropriate model requires overcoming blocks to viral replication in primary T cells. We have studied HIV-1 replication in CD4+ T cells from human CD4/ CCR5/Cyclin T1 transgenic mice. Expression of hCD4 and hCCR5 in mouse CD4+ T cells enabled efficient entry of R5 strain HIV-1. In mouse T cells, HIV-1 underwent reverse transcription and nuclear import as efficiently as in human T cells. In contrast, chromosomal integration of HIV-1 proviral DNA was inefficient in activated mouse T cells. This process was greatly enhanced by providing a secondary T cell receptor (TCR) signal after HIV-1 infection, especially between 12 to 24 h post infection. This effect was specific for primary mouse T cells. The pathways involved in HIV replication appear to be PKCθ−, CARMA1-, and WASp-independent. Treatment with Cyclosporin A (CsA) further relieved the pre-integration block. However, transcription of HIV-1 RNA was still reduced in mouse CD4+ T cells despite expression of the hCyclin T1 transgene. Additional post-transcriptional defects were observed at the levels of Gag expression, Gag processing, Gag release and virus infectivity. Together, these post-integration defects resulted in a dramatically reduced yield of infectious virus (300–500 fold) after a single cycle of HIV-1 replication. This study implies the existence of host factors, in addition to those already identified, that are critical for HIV-1 replication in mouse cells. This study also highlights the differences between primary T cells and cell lines regarding pre-integration steps in the HIV-1 replication cycle
Brain metastasis development and poor survival associated with carcinoembryonic antigen (CEA) level in advanced non-small cell lung cancer: a prospective analysis
<p>Abstract</p> <p>Background</p> <p>Central nervous system is a common site of metastasis in NSCLC and confers worse prognosis and quality of life. The aim of this prospective study was to evaluate the prognostic significance of clinical-pathological factors (CPF), serum CEA levels, and EGFR and HER2 tissue-expression in brain metastasis (BM) and overall survival (OS) in patients with advanced NSCLC.</p> <p>Methods</p> <p>In a prospective manner, we studied 293 patients with NSCLC in IIIB-IV clinical stage. They received standard chemotherapy. CEA was measured prior to treatment; EGFR and HER2 were evaluated by immunohistochemistry. BM development was confirmed by MRI in symptomatic patients.</p> <p>Results</p> <p>BM developed in 27, and 32% of patients at 1 and 2 years of diagnosis with adenocarcinoma (RR 5.2; 95% CI, 1.002–29; p = 0.05) and CEA ≥ 40 ng/mL (RR 11.4; 95% CI, 1.7–74; <it>p </it>< 0.01) as independent associated factors. EGFR and HER2 were not statistically significant. Masculine gender (RR 1.4; 95% CI, 1.002–1.9; <it>p </it>= 0.048), poor performance status (RR 1.8; 95% CI, 1.5–2.3; <it>p </it>= 0.002), advanced clinical stage (RR 1.44; 95% CI, 1.02–2; <it>p </it>= 0.04), CEA ≥ 40 ng/mL (RR 1.5; 95% CI, 1.09–2.2; <it>p </it>= 0.014) and EGFR expression (RR 1.6; 95% CI, 1.4–1.9; <it>p </it>= 0.012) were independent associated factors to worse OS.</p> <p>Conclusion</p> <p>High CEA serum level is a risk factor for BM development and is associated with poor prognosis in patients with advanced NSCLC. Surface expression of CEA in tumor cells could be the physiopathological mechanism for invasion to CNS.</p
High genetic diversity in a potentially vulnerable tropical tree species despite extreme habitat loss
10.1371/journal.pone.0082632PLoS ONE812-POLN
Clinical outcomes and kinetics of propanil following acute self-poisoning: a prospective case series
Gene Expression Profiles in Parkinson Disease Prefrontal Cortex Implicate FOXO1 and Genes under Its Transcriptional Regulation
Parkinson disease (PD) is a complex neurodegenerative disorder with largely unknown genetic mechanisms. While the degeneration of dopaminergic neurons in PD mainly takes place in the substantia nigra pars compacta (SN) region, other brain areas, including the prefrontal cortex, develop Lewy bodies, the neuropathological hallmark of PD. We generated and analyzed expression data from the prefrontal cortex Brodmann Area 9 (BA9) of 27 PD and 26 control samples using the 44K One-Color Agilent 60-mer Whole Human Genome Microarray. All samples were male, without significant Alzheimer disease pathology and with extensive pathological annotation available. 507 of the 39,122 analyzed expression probes were different between PD and control samples at false discovery rate (FDR) of 5%. One of the genes with significantly increased expression in PD was the forkhead box O1 (FOXO1) transcription factor. Notably, genes carrying the FoxO1 binding site were significantly enriched in the FDR–significant group of genes (177 genes covered by 189 probes), suggesting a role for FoxO1 upstream of the observed expression changes. Single-nucleotide polymorphisms (SNPs) selected from a recent meta-analysis of PD genome-wide association studies (GWAS) were successfully genotyped in 50 out of the 53 microarray brains, allowing a targeted expression–SNP (eSNP) analysis for 52 SNPs associated with PD affection at genome-wide significance and the 189 probes from FoxO1 regulated genes. A significant association was observed between a SNP in the cyclin G associated kinase (GAK) gene and a probe in the spermine oxidase (SMOX) gene. Further examination of the FOXO1 region in a meta-analysis of six available GWAS showed two SNPs significantly associated with age at onset of PD. These results implicate FOXO1 as a PD–relevant gene and warrant further functional analyses of its transcriptional regulatory mechanisms
- …