321 research outputs found

    Electrochemical Investigation of a Microbial Solar Cell Reveals a Nonphotosynthetic Biocathode Catalyst

    Get PDF
    Microbial solar cells (MSCs) are microbial fuel cells (MFCs) that generate their own oxidant and/or fuel through photosynthetic reactions. Here, we present electrochemical analyses and biofilm 16S rRNA gene profiling of biocathodes of sediment/seawaterbased MSCs inoculated from the biocathode of a previously described sediment/seawater-based MSC. Electrochemical analyses indicate that for these second-generation MSC biocathodes, catalytic activity diminishes over time if illumination is provided during growth, whereas it remains relatively stable if growth occurs in the dark. For both illuminated and dark MSC biocathodes, cyclic voltammetry reveals a catalytic-current–potential dependency consistent with heterogeneous electron transfer mediated by an insoluble microbial redox cofactor, which was conserved following enrichment of the dark MSC biocathode using a three-electrode configuration. 16S rRNA gene profiling showed Gammaproteobacteria, most closely related to Marinobacter spp., predominated in the enriched biocathode. The enriched biocathode biofilm is easily cultured on graphite cathodes, forms a multimicrobe-thick biofilm (up to 8.2 ΞΌm), and does not lose catalytic activity after exchanges of the reactor medium. Moreover, the consortium can be grown on cathodes with only inorganic carbon provided as the carbon source, which may be exploited for proposed bioelectrochemical systems for electrosynthesis of organic carbon from carbon dioxide. These results support a scheme where two distinct communities of organisms develop within MSC biocathodes: one that is photosynthetically active and one that catalyzes reduction of O2 by the cathode, where the former partially inhibits the latter. The relationship between the two communities must be further explored to fully realize the potential for MSC applications

    Metaproteomic evidence of changes in protein expression following a change in electrode potential in a robust biocathode microbiome

    Get PDF
    Microorganisms that respire electrodes may be exploited for biotechnology applications if key pathways for extracellular electron transfer (EET) can be identified and manipulated through bioengineering. To determine whether expression of proposed Biocathode-MCL EET proteins are changed by modulating electrode potential without disrupting the relative distribution of microbial constituents, metaproteomic and 16S rRNA gene expression analyses were performed after switching from an optimal to suboptimal potential based on an expected decrease in electrode respiration. Five hundred and seventy-nine unique proteins were identified across both potentials, the majority of which were assigned to three previously defined Biocathode-MCL metagenomic clusters: a Marinobacter sp., a member of the family Chromatiaceae, and a Labrenzia sp. Statistical analysis of spectral counts using the Fisher's exact test identified 16 proteins associated with the optimal potential, five of which are predicted electron transfer proteins. The majority of proteins associated with the suboptimal potential were involved in protein turnover/turnover, motility, and membrane transport. Unipept and 16S rRNA gene expression analyses indicated that the taxonomic profile of the microbiome did not change after 52 hours at the suboptimal potential. These findings show that protein expression is sensitive to the electrode potential without inducing shifts in community composition, a feature that may be exploited for engineering Biocathode-MCL

    A Previously Uncharacterized, Nonphotosynthetic Member of the Chromatiaceae Is the Primary CO_2-Fixing Constituent in a Self-Regenerating Biocathode

    Get PDF
    Biocathode extracellular electron transfer (EET) may be exploited for biotechnology applications, including microbially mediated O_2 reduction in microbial fuel cells and microbial electrosynthesis. However, biocathode mechanistic studies needed to improve or engineer functionality have been limited to a few select species that form sparse, homogeneous biofilms characterized by little or no growth. Attempts to cultivate isolates from biocathode environmental enrichments often fail due to a lack of some advantage provided by life in a consortium, highlighting the need to study and understand biocathode consortia in situ. Here, we present metagenomic and metaproteomic characterization of a previously described biocathode biofilm (+310 mV versus a standard hydrogen electrode [SHE]) enriched from seawater, reducing O_2, and presumably fixing CO_2 for biomass generation. Metagenomics identified 16 distinct cluster genomes, 15 of which could be assigned at the family or genus level and whose abundance was roughly divided between Alpha- and Gammaproteobacteria. A total of 644 proteins were identified from shotgun metaproteomics and have been deposited in the the ProteomeXchange with identifier PXD001045. Cluster genomes were used to assign the taxonomic identities of 599 proteins, with Marinobacter, Chromatiaceae, and Labrenzia the most represented. RubisCO and phosphoribulokinase, along with 9 other Calvin-Benson-Bassham cycle proteins, were identified from Chromatiaceae. In addition, proteins similar to those predicted for iron oxidation pathways of known iron-oxidizing bacteria were observed for Chromatiaceae. These findings represent the first description of putative EET and CO_2 fixation mechanisms for a self-regenerating, self-sustaining multispecies biocathode, providing potential targets for functional engineering, as well as new insights into biocathode EET pathways using proteomics

    Co-infections of Adenovirus Species in Previously Vaccinated Patients

    Get PDF
    Adenoviral infections associated with respiratory illness in military trainees involve multiple co-infecting species and serotypes

    Cassiosomes are stinging-cell structures in the mucus of the upside-down jellyfish Cassiopea xamachana

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.Snorkelers in mangrove forest waters inhabited by the upside-down jellyfish Cassiopea xamachana report discomfort due to a sensation known as stinging water, the cause of which is unknown. Using a combination of histology, microscopy, microfluidics, videography, molecular biology, and mass spectrometry-based proteomics, we describe C. xamachana stinging-cell structures that we term cassiosomes. These structures are released within C. xamachana mucus and are capable of killing prey. Cassiosomes consist of an outer epithelial layer mainly composed of nematocytes surrounding a core filled by endosymbiotic dinoflagellates hosted within amoebocytes and presumptive mesoglea. Furthermore, we report cassiosome structures in four additional jellyfish species in the same taxonomic group as C. xamachana (Class Scyphozoa; Order Rhizostomeae), categorized as either motile (ciliated) or nonmotile types. This inaugural study provides a qualitative assessment of the stinging contents of C. xamachana mucus and implicates mucus containing cassiosomes and free intact nematocytes as the cause of stinging water

    Function and Regulation of Vibrio campbellii Proteorhodopsin: Acquired Phototrophy in a Classical Organoheterotroph

    Get PDF
    Proteorhodopsins (PRs) are retinal-binding photoproteins that mediate light-driven proton translocation across prokaryotic cell membranes. Despite their abundance, wide distribution and contribution to the bioenergy budget of the marine photic zone, an understanding of PR function and physiological significance in situ has been hampered as the vast majority of PRs studied to date are from unculturable bacteria or culturable species that lack the tools for genetic manipulation. In this study, we describe the presence and function of a horizontally acquired PR and retinal biosynthesis gene cluster in the culturable and genetically tractable bioluminescent marine bacterium Vibrio campbellii. Pigmentation analysis, absorption spectroscopy and photoinduction assays using a heterologous over-expression system established the V. campbellii PR as a functional green light absorbing proton pump. In situ analyses comparing PR expression and function in wild type (WT) V. campbellii with an isogenic Ξ”pR deletion mutant revealed a marked absence of PR membrane localization, pigmentation and light-induced proton pumping in the Ξ”pR mutant. Comparative photoinduction assays demonstrated the distinct upregulation of pR expression in the presence of light and PR-mediated photophosphorylation in WT cells that resulted in the enhancement of cellular survival during respiratory stress. In addition, we demonstrate that the master regulator of adaptive stress response and stationary phase, RpoS1, positively regulates pR expression and PR holoprotein pigmentation. Taken together, the results demonstrate facultative phototrophy in a classical marine organoheterotrophic Vibrio species and provide a salient example of how this organism has exploited lateral gene transfer to further its adaptation to the photic zone
    • …
    corecore