98 research outputs found

    Draft genome sequences of three multiantibiotic-resistant Campylobacter jejuni strains (2865, 2868, and 2871) isolated from poultry at retail outlets in Malaysia

    Get PDF
    Campylobacter jejuni is a frequent cause of human bacterial gastrointestinal foodborne disease worldwide. Antibiotic resistance in this species is of public health concern. The draft genome sequences of three multiantibiotic-resistant C. jejuni strains (2865, 2868, and 2871) isolated from poultry at retail outlets in Malaysia are presented here

    Characterization of Shiga Toxigenic Escherichia coli O157 and Non-O157 Isolates from Ruminant Feces in Malaysia

    Get PDF
    Shiga toxigenic Escherichia coli (STEC) O157 and several other serogroups of non-O157 STEC are causative agents of severe disease in humans world-wide. The present study was conducted to characterize STEC O157 and non-O157 serogroups O26, O103, O111, O121, O45, and O145 in ruminants in Malaysia. A total of 136 ruminant feces samples were collected from 6 different farms in Peninsular Malaysia. Immunomagnetic beads were used to isolate E. coli O157 and non-O157 serogroups, while PCR was used for the detection and subtyping of STEC isolates. STEC O157:H7 was isolated from 6 (4%) feces samples and all isolates obtained carried stx2c,  eaeA-γ1, and ehxA. Non-O157 STEC was isolated from 2 (1.5%) feces samples with one isolate carrying stx1a, stx2a, stx2c, and ehxA and the other carrying stx1a alone. The presence of STEC O157 and non-O157 in a small percentage of ruminants in this study together with their virulence characteristics suggests that they may have limited impact on public health

    Inhibition of attachment of oral bacteria to immortalized human gingival fibroblasts (HGF-1) by tea extracts and tea components

    Get PDF
    Background: Tea has been suggested to promote oral health by inhibiting bacterial attachment to the oral cavity. Most studies have focused on prevention of bacterial attachment to hard surfaces such as enamel. Findings: This study investigated the effect of five commercial tea (green, oolong, black, pu-erh and chrysanthemum) extracts and tea components (epigallocatechin gallate and gallic acid) on the attachment of five oral pathogens (Streptococcus mutans ATCC 25175, Streptococcus mutans ATCC 35668, Streptococcus mitis ATCC 49456, Streptococcus salivarius ATCC 13419 and Actinomyces naeslundii ATCC 51655) to the HGF-1 gingival cell line. Extracts of two of the teas (pu-erh and chrysanthemum) significantly (p < 0.05) reduced attachment of all the Streptococcus strains by up to 4 log CFU/well but effects of other teas and components were small. Conclusions: Pu-erh and chrysanthemum tea may have the potential to reduce attachment of oral pathogens to gingival tissue and improve the health of oral soft tissues

    The Use of Interdisciplinary Approaches to Understand the Biology of Campylobacter jejuni

    Get PDF
    Funding Information: This work was supported by a scholarship grant from the University of Aberdeen and Curtin University.Peer reviewedPublisher PD

    Challenges of biofilm control and utilization : lessons from mathematical modelling

    Get PDF
    Funding This work was supported by a scholarship grant from the School of Natural and Computing Sciences at the University of Aberdeen and the Faculty of Health Sciences at Curtin University.Peer reviewedPostprin

    Technology-Enabled Health Care Collaboration in Pediatric Chronic Illness: Pre-post Interventional Study for Feasibility, Acceptability, and Clinical Impact of an Electronic Health Record–Linked Platform for Patient-Clinician Partnership

    Get PDF
    Background: Mobile health (mHealth) technology has the potential to support the Chronic Care Model\u27s vision of closed feedback loops and patient-clinician partnerships. Objective: This study aims to evaluate the feasibility, acceptability, and short-term impact of an electronic health record-linked mHealth platform (Orchestra) supporting patient and clinician collaboration through real-time, bidirectional data sharing. Methods: We conducted a 6-month prospective, pre-post, proof-of-concept study of Orchestra among patients and parents in the Cincinnati Children\u27s Hospital inflammatory bowel disease (IBD) and cystic fibrosis (CF) clinics. Participants and clinicians used Orchestra during and between visits to complete and view patient-reported outcome (PRO) measures and previsit plans. Surveys completed at baseline and at 3- and 6-month follow-up visits plus data from the platform were used to assess outcomes including PRO completion rates, weekly platform use, disease self-efficacy, and impact on care. Analyses included descriptive statistics; pre-post comparisons; Pearson correlations; and, if applicable, effect sizes. Results: We enrolled 92 participants (CF: n = 52 and IBD: n = 40), and 73% (67/92) completed the study. Average PRO completion was 61%, and average weekly platform use was 80%. Participants reported improvement in self-efficacy from baseline to 6 months (7.90 to 8.44; P = .006). At 6 months, most participants reported that the platform was useful (36/40, 90%) and had a positive impact on their care, including improved visit quality (33/40, 83%), visit collaboration (35/40, 88%), and visit preparation (31/40, 78%). PRO completion was positively associated with multiple indicators of care impact at 3 and 6 months. Conclusions: Use of an mHealth tool to support closed feedback loops through real-time data sharing and patient-clinician collaboration is feasible and shows indications of acceptability and promise as a strategy for improving pediatric chronic illness management

    Systematic-review and meta-analysis on effect of decontamination interventions on prevalence and concentration of Campylobacter spp. during primary processing of broiler chickens

    Get PDF
    Please read abstract in the article.Partly supported by the Australia Awards Africa Post-Doctoral Fellowship.https://www.elsevier.com/locate/fmhj2023Consumer ScienceFood Scienc

    Attachment of Salmonella strains to a plant cell wall model is modulated by surface characteristics and not by specific carbohydrate interactions

    Get PDF
    Background: Processing of fresh produce exposes cut surfaces of plant cell walls that then become vulnerable to human foodborne pathogen attachment and contamination, particularly by Salmonella enterica. Plant cell walls are mainly composed of the polysaccharides cellulose, pectin and hemicelluloses (predominantly xyloglucan). Our previous work used bacterial cellulose-based plant cell wall models to study the interaction between Salmonella and the various plant cell wall components. We demonstrated that Salmonella attachment was favoured in the presence of pectin while xyloglucan had no effect on its attachment. Xyloglucan significantly increased the attachment of Salmonella cells to the plant cell wall model only when it was in association with pectin. In this study, we investigate whether the plant cell wall polysaccharides mediate Salmonella attachment to the bacterial cellulose-based plant cell wall models through specific carbohydrate interactions or through the effects of carbohydrates on the physical characteristics of the attachment surface. Results: We found that none of the monosaccharides that make up the plant cell wall polysaccharides specifically inhibit Salmonella attachment to the bacterial cellulose-based plant cell wall models. Confocal laser scanning microscopy showed that Salmonella cells can penetrate and attach within the tightly arranged bacterial cellulose network. Analysis of images obtained from atomic force microscopy revealed that the bacterial cellulose-pectin-xyloglucan composite with 0.3 % (w/v) xyloglucan, previously shown to have the highest number of Salmonella cells attached to it, had significantly thicker cellulose fibrils compared to other composites. Scanning electron microscopy images also showed that the bacterial cellulose and bacterial cellulose-xyloglucan composites were more porous when compared to the other composites containing pectin. Conclusions: Our study found that the attachment of Salmonella cells to cut plant cell walls was not mediated by specific carbohydrate interactions. This suggests that the attachment of Salmonella strains to the plant cell wall models were more dependent on the structural characteristics of the attachment surface. Pectin reduces the porosity and space between cellulose fibrils, which then forms a matrix that is able to retain Salmonella cells within the bacterial cellulose network. When present with pectin, xyloglucan provides a greater surface for Salmonella cells to attach through the thickening of cellulose fibrils

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Correction to: Cluster identification, selection, and description in Cluster randomized crossover trials: the PREP-IT trials

    Get PDF
    An amendment to this paper has been published and can be accessed via the original article
    corecore