207 research outputs found

    Physiological and molecular characterization of aluminum resistance in Medicago truncatula

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aluminum (Al) toxicity is an important factor limiting crop production on acid soils. However, little is known about the mechanisms by which legumes respond to and resist Al stress. To explore the mechanisms of Al toxicity and resistance in legumes, we compared the impact of Al stress in Al-resistant and Al-sensitive lines of the model legume, <it>Medicago truncatula </it>Gaertn.</p> <p>Results</p> <p>A screen for Al resistance in 54 <it>M. truncatula </it>accessions identified eight Al-resistant and eight Al-sensitive lines. Comparisons of hydroponic root growth and root tip hematoxylin staining in an Al-resistant line, T32, and an Al-sensitive line, S70, provided evidence that an inducible Al exclusion mechanism occurs in T32. Transcriptional events associated with the Al resistance response were analyzed in T32 and S70 after 12 and 48 h Al treatment using oligonucleotide microarrays. Fewer genes were differentially regulated in response to Al in T32 compared to S70. Expression patterns of oxidative stress-related genes, stress-response genes and microscopic examination of Al-treated root tips suggested a lower degree of Al-induced oxidative damage to T32 root tips compared to S70. Furthermore, genes associated with cell death, senescence, and cell wall degradation were induced in both lines after 12 h of Al treatment but preferentially in S70 after 48 h of Al treatment. A multidrug and toxin efflux (MATE) transporter, previously shown to exude citrate in <it>Arabidopsis</it>, showed differential expression patterns in T32 and S70.</p> <p>Conclusion</p> <p>Our results identified novel genes induced by Al in Al-resistant and sensitive <it>M. truncatula </it>lines. In T32, transcription levels of genes related to oxidative stress were consistent with reactive oxygen species production, which would be sufficient to initiate cell death of Al-accumulating cells thereby contributing to Al exclusion and root growth recovery. In contrast, transcriptional levels of oxidative stress-related genes were consistent with excessive reactive oxygen species accumulation in S70 potentially resulting in necrosis and irreversible root growth inhibition. In addition, a citrate-exuding MATE transporter could function in Al exclusion and/or internal detoxification in T32 based on Al-induced transcript localization studies. Together, our findings indicate that multiple responses likely contribute to Al resistance in <it>M. truncatula</it>.</p

    Quantitative Trait Loci Associated with Drought Tolerance in Brachypodium distachyon

    Get PDF
    The temperate wild grass Brachypodium distachyon (Brachypodium) serves as model system for studying turf and forage grasses. Brachypodium collections show diverse responses to drought stress, but little is known about the genetic mechanisms of drought tolerance of this species. The objective of this study was to identify quantitative trait loci (QTLs) associated with drought tolerance traits in Brachypodium. We assessed leaf fresh weight (LFW), leaf dry weight (LDW), leaf water content (LWC), leaf wilting (WT), and chlorophyll fluorescence (Fv/Fm) under well-watered and drought conditions on a recombinant inbred line (RIL) population from two parents (Bd3-1 and Bd1-1) known to differ in their drought adaptation. A linkage map of the RIL population was constructed using 467 single nucleotide polymorphism (SNP) markers obtained from genotyping-by-sequencing. The Bd3-1/Bd1-1 map spanned 1,618 cM and had an average distance of 3.5 cM between adjacent single nucleotide polymorphisms (SNPs). Twenty-six QTLs were identified in chromosome 1, 2, and 3 in two experiments, with 14 of the QTLs under well-watered conditions and 12 QTLs under drought stress. In Experiment 1, a QTL located on chromosome 2 with a peak at 182 cM appeared to simultaneously control WT, LWC, and Fv/Fm under drought stress, accounting for 11–18.7% of the phenotypic variation. Allelic diversity of candidate genes DREB2B, MYB, and SPK, which reside in one multi-QTL region, may play a role in the natural variation in whole plant drought tolerance in Brachypodium. Co-localization of QTLs for multiple drought-related traits suggest that the gene(s) involved are important regulators of drought tolerance in Brachypodium

    Prospectus, October 7, 1991

    Get PDF
    https://spark.parkland.edu/prospectus_1991/1014/thumbnail.jp

    The ROM / UWO Mummy Project: A Microcosm of Progress in Mummy Research

    Get PDF
    The beginnings of the Royal Ontario Museum can be traced back to the excavations and collections of Charles Trick Currelly, a staff member of the Egyptian Exploration Fund in the early 1900s. Currelly excavated with Sir Flinders Petrie at Abydos and with Edouard Naville at Deir el Bahari. With the assistance of Robert Mond and others, Currelly amassed a rich and diverse collection that became the basis for the ROM, which opened its doors in 1914. Part of that collection included several Egyptian mummies (Currelly 1971) . The Egyptologicalholdings at the ROM include eight mummies: one dating to the Predynastic Period, five from the Pharaonic Period, one from the Roman Period and one without context. Two of these, Nakht and Djedmaatesankh, have been well studied by Peter Lewin and associates, while three more are the subjects of the current investigation. The objectives of this poster are to review the work and accomplishments of the previous research, to describe the preliminary results of the current research project and to outline directions for future work

    Fine Mapping of the Bsr1 Barley Stripe Mosaic Virus Resistance Gene in the Model Grass Brachypodium distachyon

    Get PDF
    The ND18 strain of Barley stripe mosaic virus (BSMV) infects several lines of Brachypodium distachyon, a recently developed model system for genomics research in cereals. Among the inbred lines tested, Bd3-1 is highly resistant at 20 to 25°C, whereas Bd21 is susceptible and infection results in an intense mosaic phenotype accompanied by high levels of replicating virus. We generated an F6∶7 recombinant inbred line (RIL) population from a cross between Bd3-1 and Bd21 and used the RILs, and an F2 population of a second Bd21 × Bd3-1 cross to evaluate the inheritance of resistance. The results indicate that resistance segregates as expected for a single dominant gene, which we have designated Barley stripe mosaic virus resistance 1 (Bsr1). We constructed a genetic linkage map of the RIL population using SNP markers to map this gene to within 705 Kb of the distal end of the top of chromosome 3. Additional CAPS and Indel markers were used to fine map Bsr1 to a 23 Kb interval containing five putative genes. Our study demonstrates the power of using RILs to rapidly map the genetic determinants of BSMV resistance in Brachypodium. Moreover, the RILs and their associated genetic map, when combined with the complete genomic sequence of Brachypodium, provide new resources for genetic analyses of many other traits
    • …
    corecore