754 research outputs found

    Water quality enhancement by point destratification

    Get PDF

    Sensitivity of Species Habitat-Relationship Model Performance to Factors of Scale

    Get PDF
    Researchers have come to different conclusions about the usefulness of habitat-relationship models for predicting species presence or absence. This difference frequently stems from a failure to recognize the effects of spatial scales at which the models are applied. We examined the effects of model complexity, spatial data resolution, and scale of application on the performance of bird habitat relationship (BHR) models on the Craig Mountain Wildlife Management Area and on the Idaho portion of the U.S. Forest Service\u27s Northern Region. We constructed and tested BHR models for 60 bird species detected on the study areas. The models varied by three levels of complexity (amount of habitat information) and three spatial data resolutions (0.09 ha, 4 ha, 10 ha). We tested these models at two levels of analysis: the site level (a homogeneous area \u3c0.5 ha) and cover-type level (an aggregation of many similar sites of a similar land-cover type), using correspondence between model predictions and species detections to calculate kappa coefficients of agreement. Model performance initially increased as models became more complex until a point was reached where omission errors increased at a rate greater than the rate at which commission errors were decreasing. Heterogeneity of the study areas appeared to influence the effect of model complexity. Changes in model complexity resulted in a greater decrease in commission error than increase in omission error. The effect of spatial data resolution on the performance of BHR models was influenced by the variability of the study area. BHR models performed better at cover-type levels of analysis than at the site level for both study areas. Correct-presence estimates (1 āˆ’ minus percentage omission error) decreased slightly as number of species detections increased on each study area. Correct-absence estimates (1 āˆ’ percentage commission error) increased as number of species detections increased on each study area. This suggests that a large number of detections may be necessary to achieve reliable estimates of model accuracy

    Fine particle characterisation, Source Apportionment and Long Range Dust Transport into the Sydney Basin: A long term study between 1998 and 2009.

    Get PDF
    Ion beam analysis techniques have been used to characterise fine particle (PM2.5) pollution in the Sydney Basin between 1 July 1998 and 31 December 2009. Nearly 1 200 filters were obtained and analysed for more than 21 different chemical species from hydrogen to lead. Positive matrix factorisation was then applied to this significant database to determine 7 different source fingerprints and their contributions to the total PM2.5 mass. Most of these sources originated in the Sydney Basin, however there were significant windblown soil sources that originated not just from desert regions in central Australia but also from large agricultural regions around 500 km south west of the Basin. This long range transport of fine dust was tracked using hourly back trajectories for every sampling day during the study period and showed that 33% of extreme dust events were probably originating from agricultural regions and not the central desert regions of Australia as first thought. Copyright Copyright Ā© 2011 Turkish National Committee for Air Pollution Research and Control (TUNCAP)

    Symmetry breaking in crossed magnetic and electric fields

    Get PDF
    We present the first observations of cylindrical symmetry breaking in highly excited diamagnetic hydrogen with a small crossed electric field, and we give a semiclassical interpretation of this effect. As the small perpendicular electric field is added, the recurrence strengths of closed orbits decrease smoothly to a minimum, and revive again. This phenomenon, caused by interference among the electron waves that return to the nucleus, can be computed from the azimuthal dependence of the classical closed orbits.Comment: 4 page REVTeX file including 5 postscript files (using psfig) Accepted for publication in Physical Review Letters. Difference from earlier preprint: we have discovered the cause of the earlier apparent discrepancy between experiment and theory and now achieve excellent agreemen

    Transitions/relaxations in polyester adhesive/PET system

    Get PDF
    The correlations between the transitions and the dielectric relaxation processes of the oriented poly(ethylene terephthalate) (PET) pre-impregnated of the polyester thermoplastic adhesive have been investigated by differential scanning calorimetry (DSC) and dynamic dielectric spectroscopy (DDS). The thermoplastic polyester adhesive and the oriented PET films have been studied as reference samples. This study evidences that the adhesive chain segments is responsible for the physical structure evolution in the PET-oriented film. The transitions and dielectric relaxation modesā€™ evolutions in the glass transition region appear characteristic of the interphase between adhesive and PET film, which is discussed in terms of molecular mobility. The storage at room temperature of the adhesive tape involves the heterogeneity of the physical structure, characterized by glass transition dissociation. Thus, the correlation between the transitions and the dielectric relaxation processes evidences a segregation of the amorphous phases. Therefore, the physical structure and the properties of the material have been linked to the chemical characteristics

    The innate immune response to coxsackievirus B3 predicts progression to cardiovascular disease and heart failure in male mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Men are at an increased risk of dying from heart failure caused by inflammatory heart diseases such as atherosclerosis, myocarditis and dilated cardiomyopathy (DCM). We previously showed that macrophages in the spleen are phenotypically distinct in male compared to female mice at 12 h after infection. This innate immune profile mirrors and predicts the cardiac immune response during acute myocarditis.</p> <p>Methods</p> <p>In order to study sex differences in the innate immune response, five male and female BALB/c mice were infected intraperitoneally with coxsackievirus B3 (CVB3) or phosphate buffered saline and their spleens were harvested 12 h later for microarray analysis. Gene expression was determined using an Affymetrix Mouse Gene 1.0 ST Array. Significant gene changes were verified by quantitative real-time polymerase chain reaction or ELISA.</p> <p>Results</p> <p>During the innate immune response to CVB3 infection, infected males had higher splenic expression of genes which are important in regulating the influx of cholesterol into macrophages, such as phospholipase A<sub>2 </sub>(PLA<sub>2</sub>) and the macrophage scavenger receptor compared to the infected females. We also observed a higher expression in infected males compared to infected females of squalene synthase, an enzyme used to generate cholesterol within cells, and Cyp2e1, an enzyme important in metabolizing cholesterol and steroids. Infected males also had decreased levels of the translocator protein 18 kDa (TSPO), which binds PLA<sub>2 </sub>and is the rate-limiting step for steroidogenesis, as well as decreased expression of the androgen receptor (AR), which indicates receptor activation. Gene differences were not due to increased viral replication, which was unaltered between sexes.</p> <p>Conclusions</p> <p>We found that, compared to females, male mice had a greater splenic expression of genes which are important for cholesterol metabolism and activation of the AR at 12 h after infection. Activation of the AR has been linked to increased cardiac hypertrophy, atherosclerosis, myocarditis/DCM and heart failure in male mice and humans.</p

    Pharmacodynamic modeling of bacillary elimination rates and detection of bacterial lipid bodies in sputum to predict and understand outcomes in treatment of pulmonary tuberculosis

    Get PDF
    This work was supported by a Wellcome Trust Clinical PhD Fellowship (086757/Z/08/A to D. J. S.), the Malawi Liverpool Wellcome Trust Core grant, and Medical Research Council (grant number G0300403 to M. R. B.).Background. Antibiotic-tolerant bacterial persistence prevents treatment shortening in drug-susceptible tuberculosis, and accumulation of intracellular lipid bodies has been proposed to identify a persister phenotype of Mycobacterium tuberculosis cells. In Malawi, we modeled bacillary elimination rates (BERs) from sputum cultures and calculated the percentage of lipid body-positive acid-fast bacilli (%LB + AFB) on sputum smears. We assessed whether these putative measurements of persistence predict unfavorable outcomes (treatment failure/relapse). Methods. Adults with pulmonary tuberculosis received standard 6-month therapy. Sputum samples were collected during the first 8 weeks for serial sputum colony counting (SSCC) on agar and time-to positivity (TTP) measurement in mycobacterial growth indicator tubes. BERs were extracted from nonlinear and linear mixed-effects models, respectively, fitted to these datasets. The %LB + AFB counts were assessed by fluorescence microscopy. Patients were followed until 1 year posttreatment. Individual BERs and %LB + AFB counts were related to final outcomes. Results. One hundred and thirty-three patients (56% HIV coinfected) participated, and 15 unfavorable outcomes were reported. These were inversely associated with faster sterilization phase bacillary elimination from the SSCC model (odds ratio [OR], 0.39; 95% confidence interval [CI], .22-.70) and a faster BER from the TTP model (OR, 0.71; 95% CI, .55-.94). Higher %LB + AFB counts on day 21-28 were recorded in patients who suffered unfavorable final outcomes compared with those who achieved stable cure (P = .008). Conclusions. Modeling BERs predicts final outcome, and high %LB + AFB counts 3-4 weeks into therapy may identify a persister bacterial phenotype. These methods deserve further evaluation as surrogate endpoints for clinical trials.Publisher PDFPeer reviewe

    The relative contribution of climate to changes in lesser prairie-chicken abundance

    Get PDF
    Citation: Ross, B. E., Haukos, D., Hagen, C., & Pitman, J. (2016). The relative contribution of climate to changes in lesser prairie-chicken abundance. Ecosphere, 7(6), 11. doi:10.1002/ecs2.1323Managing for species using current weather patterns fails to incorporate the uncertainty associated with future climatic conditions; without incorporating potential changes in climate into conservation strategies, management and conservation efforts may fall short or waste valuable resources. Understanding the effects of climate change on species in the Great Plains of North America is especially important, as this region is projected to experience an increased magnitude of climate change. Of particular ecological and conservation interest is the lesser prairie-chicken (Tympanuchus pallidicinctus), which was listed as "threatened" under the U.S. Endangered Species Act in May 2014. We used Bayesian hierarchical models to quantify the effects of extreme climatic events (extreme values of the Palmer Drought Severity Index [PDSI]) relative to intermediate (changes in El Nino Southern Oscillation) and long-term climate variability (changes in the Pacific Decadal Oscillation) on trends in lesser prairie-chicken abundance from 1981 to 2014. Our results indicate that lesser prairie-chicken abundance on leks responded to environmental conditions of the year previous by positively responding to wet springs (high PDSI) and negatively to years with hot, dry summers (low PDSI), but had little response to variation in the El Nino Southern Oscillation and the Pacific Decadal Oscillation. Additionally, greater variation in abundance on leks was explained by variation in site relative to broad-scale climatic indices. Consequently, lesser prairie-chicken abundance on leks in Kansas is more strongly influenced by extreme drought events during summer than other climatic conditions, which may have negative consequences for the population as drought conditions intensify throughout the Great Plains

    Patterns in Greater Sage-grouse population dynamics correspond with public grazing records at broad scales

    Get PDF
    Human land use, such as livestock grazing, can have profound yet varied effects on wildlife interacting within common ecosystems, yet our understanding of land-use effects is often generalized from short-term, local studies that may not correspond with trends at broader scales. Here we used public land records to characterize livestock grazing across Wyoming, USA, and we used Greater Sage-grouse (Centrocercus urophasianus) as a model organism to evaluate responses to livestock management. With annual counts of male Sage-grouse from 743 leks (breeding display sites) during 2004-2014, we modeled population trends in response to grazing level (represented by a relative grazing index) and timing across a gradient in vegetation productivity as measured by the Normalized Vegetation Difference Index (NDVI). We found grazing can have both positive and negative effects on Sage-grouse populations depending on the timing and level of grazing. Sage-grouse populations responded positively to higher grazing levels after peak vegetation productivity, but populations declined when similar grazing levels occurred earlier, likely reflecting the sensitivity of cool-season grasses to grazing during peak growth periods. We also found support for the hypothesis that effects of grazing management vary with local vegetation productivity. These results illustrate the importance of broad-scale analyses by revealing patterns in Sage-grouse population trends that may not be inferred from studies at finer scales, and could inform sustainable grazing management in these ecosystems
    • ā€¦
    corecore