37 research outputs found

    Analysis of the TGFβ functional pathway in epithelial ovarian carcinoma

    Get PDF
    Epithelial ovarian carcinoma is often diagnosed at an advanced stage of disease and is the leading cause of death from gynaecological neoplasia. The genetic changes that occur during the development of this carcinoma are poorly understood. It has been proposed that IGFIIR, TGFβ1 and TGFβRII act as a functional unit in the TGFβ growth inhibitory pathway, and that somatic loss-of-function mutations in any one of these genes could lead to disruption of the pathway and subsequent loss of cell cycle control. We have examined these 3 genes in 25 epithelial ovarian carcinomas using single-stranded conformational polymorphism analysis and DNA sequence analysis. A total of 3 somatic missense mutations were found in the TGFβRII gene, but none in IGFRII or TGFβ1. An association was found between TGFβRII mutations and histology, with 2 out of 3 clear cell carcinomas having TGFβRII mutations. This data supports other evidence from mutational analysis of the PTEN and β-catenin genes that there are distinct developmental pathways responsible for the progression of different epithelial ovarian cancer histologic subtypes. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Induction by transforming growth factor-β1 of epithelial to mesenchymal transition is a rare event in vitro

    Get PDF
    INTRODUCTION: Transforming growth factor (TGF)-β1 is proposed to inhibit the growth of epithelial cells in early tumorigenesis, and to promote tumor cell motility and invasion in the later stages of carcinogenesis through the induction of an epithelial to mesenchymal transition (EMT). EMT is a multistep process that is characterized by changes in cell morphology and dissociation of cell–cell contacts. Although there is growing interest in TGF-β1-mediated EMT, the phenotype is limited to only a few murine cell lines and mouse models. METHODS: To identify alternative cell systems in which to study TGF-β1-induced EMT, 18 human and mouse established cell lines and cultures of two human primary epithelial cell types were screened for TGF-β1-induced EMT by analysis of cell morphology, and localization of zonula occludens-1, E-cadherin, and F-actin. Sensitivity to TGF-β1 was also determined by [(3)H]thymidine incorporation, flow cytometry, phosphorylation of Smad2, and total levels of Smad2 and Smad3 in these cell lines and in six additional cancer cell lines. RESULTS: TGF-β1 inhibited the growth of most nontransformed cells screened, but many of the cancer cell lines were insensitive to the growth inhibitory effects of TGF-β1. In contrast, TGF-β1 induced Smad2 phosphorylation in the majority of cell lines, including cell lines resistant to TGF-β1-mediated cell cycle arrest. Of the cell lines screened only two underwent TGF-β1-induced EMT. CONCLUSION: The results presented herein show that, although many cancer cell lines have lost sensitivity to the growth inhibitory effect of TGF-β1, most show evidence of TGF-β1 signal transduction, but only a few cell lines undergo TGF-β1-mediated EMT

    Modulation of Inflammation by Cicaderma Ointment Accelerates Skin Wound Healing

    No full text
    International audienc

    The Soluble Chain of Interleukin-15 Receptor: A Proinflammatory Molecule Associated with Tumor Progression in Head and Neck Cancer

    No full text
    International audienceInterleukin (IL)-15 is a proinflammatory cytokine, as it induces the production of inflammatory cytokines [IL-6, tumor necrosis factor alpha (TNFalpha), IL-17, etc.]. A correlation between high intratumoral IL-15 concentrations and poor clinical outcome in lung and head and neck cancer patients has been recently reported. The purpose of this study was to investigate the role of the soluble alpha chain of IL-15 receptor (sIL-15Ralpha), a natural regulator of IL-15, in head and neck cancer. Fifty-three newly diagnosed untreated head and neck cancer patients were included in this study. Quantification of sIL-15Ralpha was performed with a newly developed RIA. Increased serum sIL-15Ralpha concentrations were found in head and neck cancer patients and were closely correlated with poor clinical outcome both in terms of locoregional control and survival even on multivariate analysis. sIL-15Ralpha was mainly produced by tumor cells via proteolytic cleavage of IL-15Ralpha mediated by ADAM-17. A correlation was observed between ADAM-17 expression in tumor cells and serum sIL-15Ralpha concentrations. Surprisingly, sIL-15Ralpha did not act in vitro as an IL-15 antagonist but rather as an enhancer of IL-15-induced proinflammatory cytokines (IL-6, TNFalpha, and IL-17) that may promote tumor progression. This new tumor evasion mechanism based on amplification of the intratumoral inflammatory reaction is probably not restricted to head and neck cancer, as other tumors have been shown to release sIL-15Ralpha. Overall, these results support for the first time an original protumor role of sIL-15Ralpha in cancer
    corecore