129 research outputs found

    On-chip Few-shot Learning with Surrogate Gradient Descent on a Neuromorphic Processor

    Get PDF
    Recent work suggests that synaptic plasticity dynamics in biological models of neurons and neuromorphic hardware are compatible with gradient-based learning (Neftci et al., 2019). Gradient-based learning requires iterating several times over a dataset, which is both time-consuming and constrains the training samples to be independently and identically distributed. This is incompatible with learning systems that do not have boundaries between training and inference, such as in neuromorphic hardware. One approach to overcome these constraints is transfer learning, where a portion of the network is pre-trained and mapped into hardware and the remaining portion is trained online. Transfer learning has the advantage that pre-training can be accelerated offline if the task domain is known, and few samples of each class are sufficient for learning the target task at reasonable accuracies. Here, we demonstrate on-line surrogate gradient few-shot learning on Intel's Loihi neuromorphic research processor using features pre-trained with spike-based gradient backpropagation-through-time. Our experimental results show that the Loihi chip can learn gestures online using a small number of shots and achieve results that are comparable to the models simulated on a conventional processor

    Online Few-shot Gesture Learning on a Neuromorphic Processor

    Full text link
    We present the Surrogate-gradient Online Error-triggered Learning (SOEL) system for online few-shot learningon neuromorphic processors. The SOEL learning system usesa combination of transfer learning and principles of computa-tional neuroscience and deep learning. We show that partiallytrained deep Spiking Neural Networks (SNNs) implemented onneuromorphic hardware can rapidly adapt online to new classesof data within a domain. SOEL updates trigger when an erroroccurs, enabling faster learning with fewer updates. Using gesturerecognition as a case study, we show SOEL can be used for onlinefew-shot learning of new classes of pre-recorded gesture data andrapid online learning of new gestures from data streamed livefrom a Dynamic Active-pixel Vision Sensor to an Intel Loihineuromorphic research processor.Comment: 10 pages, submitted to IEEE JETCAS for revie

    Impact of Baseline Heart Failure Burden on Post-Implantable Cardioverter-Defibrillator Mortality Among Medicare Beneficiaries

    Get PDF
    ObjectivesThis study sought to assess the impact of baseline heart failure (HF) burden on survival with primary implantable cardioverter-defibrillator (ICD) among Medicare recipients.BackgroundSurvival after primary ICD implantation may differ between trial and Medicare populations.MethodsLinking data from the CMS (Centers for Medicare and Medicaid Services) ICD registry and the Medicare files (2005 to 2009), we identified primary ICD recipients age ≥66 years with ejection fraction ≤35%. Number of previous HF hospitalizations (prev-HF-hosp) and length of hospitalization prior to implantation were used to define HF burden. Crude all-cause mortality was estimated. Adjusted hazard ratios (HR) were derived from Cox models.ResultsOf 66,974 ICD recipients (73% men, 88% white, mean age 75 years), 11,876 died (average follow-up = 1.4 years), with 3-year mortality of 31%. Among patients with no prev-HF-hosp, 3-year mortality was 27% compared with 63% in those with ≥3 prev-HF-hosp (adjusted HR: 1.8). Among patients with same-day implantation, 3-year mortality was 25% compared with 53% in those with >1-week hospitalization days prior to implantation (adjusted HR: 1.9). Mortality at 3-year follow-up among the 31,685 ICD recipients with no prev-HF-hosp and same-day implantation (low HF burden) was similar to that in trials (22%).ConclusionsNearly one-third of Medicare ICD recipients died within 3 years, reflecting a population with more advanced age and disease than seen in trial populations for primary prevention ICD. Nearly one-half of Medicare recipients had a low HF burden and had a survival similar to trial ICD recipients. Future research is warranted to understand the effectiveness of primary ICD implantation among Medicare beneficiaries with heavy HF burdens

    Accuracies of genomic breeding values in American Angus beef cattle using K-means clustering for cross-validation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genomic selection is a recently developed technology that is beginning to revolutionize animal breeding. The objective of this study was to estimate marker effects to derive prediction equations for direct genomic values for 16 routinely recorded traits of American Angus beef cattle and quantify corresponding accuracies of prediction.</p> <p>Methods</p> <p>Deregressed estimated breeding values were used as observations in a weighted analysis to derive direct genomic values for 3570 sires genotyped using the Illumina BovineSNP50 BeadChip. These bulls were clustered into five groups using K-means clustering on pedigree estimates of additive genetic relationships between animals, with the aim of increasing within-group and decreasing between-group relationships. All five combinations of four groups were used for model training, with cross-validation performed in the group not used in training. Bivariate animal models were used for each trait to estimate the genetic correlation between deregressed estimated breeding values and direct genomic values.</p> <p>Results</p> <p>Accuracies of direct genomic values ranged from 0.22 to 0.69 for the studied traits, with an average of 0.44. Predictions were more accurate when animals within the validation group were more closely related to animals in the training set. When training and validation sets were formed by random allocation, the accuracies of direct genomic values ranged from 0.38 to 0.85, with an average of 0.65, reflecting the greater relationship between animals in training and validation. The accuracies of direct genomic values obtained from training on older animals and validating in younger animals were intermediate to the accuracies obtained from K-means clustering and random clustering for most traits. The genetic correlation between deregressed estimated breeding values and direct genomic values ranged from 0.15 to 0.80 for the traits studied.</p> <p>Conclusions</p> <p>These results suggest that genomic estimates of genetic merit can be produced in beef cattle at a young age but the recurrent inclusion of genotyped sires in retraining analyses will be necessary to routinely produce for the industry the direct genomic values with the highest accuracy.</p

    Climate change, water rights, and water supply: The case of irrigated agriculture in Idaho

    Get PDF
    We conduct a hedonic analysis to estimate the response of agricultural land use to water supply information under the Prior Appropriation Doctrine by using Idaho as a case study. Our analysis includes long-term climate (weather) trends and water supply conditions as well as seasonal water supply forecasts. A farm-level panel data set, which accounts for the priority effects of water rights and controls for diversified crop mixes and rotation practices, is used. Our results indicate that farmers respond to the long-term surface and ground water conditions as well as to the seasonal water supply variations. Climate change-induced variations in climate and water supply conditions could lead to substantial damages to irrigated agriculture. We project substantial losses (up to 32%) of the average crop revenue for major agricultural areas under future climate scenarios in Idaho. Finally, farmers demonstrate significantly varied responses given their water rights priorities, which imply that the distributional impact of climate change is sensitive to institutions such as the Prior Appropriation Doctrine. ? 2014. American Geophysical Union. All Rights Reserved

    Cardiac Sarcoidosis: When and How to Treat Inflammation

    Get PDF
    Sarcoidosis is a complex, multisystem inflammatory disease with a heterogeneous clinical spectrum. Approximately 25% of patients with systemic sarcoidosis will have cardiac involvement that portends a poorer outcome. The diagnosis, particularly of isolated cardiac sarcoidosis, can be challenging. A paucity of randomised data exist on who, when and how to treat myocardial inflammation in cardiac sarcoidosis. Despite this, corticosteroids continue to be the mainstay of therapy for the inflammatory phase, with an evolving role for steroid-sparing and biological agents. This review explores the immunopathogenesis of inflammation in sarcoidosis, current evidence-based treatment indications and commonly used immunosuppression agents. It explores a multidisciplinary treatment and monitoring approach to myocardial inflammation and outlines current gaps in our understanding of this condition, emerging research and future directions in this field
    corecore