43 research outputs found

    Systematic evaluation of immune regulation and modulation

    Get PDF
    Cancer immunotherapies are showing promising clinical results in a variety of malignancies. Monitoring the immune as well as the tumor response following these therapies has led to significant advancements in the field. Moreover, the identification and assessment of both predictive and prognostic biomarkers has become a key component to advancing these therapies. Thus, it is critical to develop systematic approaches to monitor the immune response and to interpret the data obtained from these assays. In order to address these issues and make recommendations to the field, the Society for Immunotherapy of Cancer reconvened the Immune Biomarkers Task Force. As a part of this Task Force, Working Group 3 (WG3) consisting of multidisciplinary experts from industry, academia, and government focused on the systematic assessment of immune regulation and modulation. In this review, the tumor microenvironment, microbiome, bone marrow, and adoptively transferred T cells will be used as examples to discuss the type and timing of sample collection. In addition, potential types of measurements, assays, and analyses will be discussed for each sample. Specifically, these recommendations will focus on the unique collection and assay requirements for the analysis of various samples as well as the high-throughput assays to evaluate potential biomarkers

    Mood and the Market: Can Press Reports of Investors’ Mood Predict Stock Prices?

    Get PDF
    We examined whether press reports on the collective mood of investors can predict changes in stock prices. We collected data on the use of emotion words in newspaper reports on traders’ affect, coded these emotion words according to their location on an affective circumplex in terms of pleasantness and activation level, and created indices of collective mood for each trading day. Then, by using time series analyses, we examined whether these mood indices, depicting investors’ emotion on a given trading day, could predict the next day’s opening price of the stock market. The strongest findings showed that activated pleasant mood predicted increases in NASDAQ prices, while activated unpleasant mood predicted decreases in NASDAQ prices. We conclude that both valence and activation levels of collective mood are important in predicting trend continuation in stock prices

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Microstructural effects on failure modes in highly aligned short carbon fiber composites

    No full text
    Aligned short carbon fiber (3‐5 mm) thermoplastic composites have potential for versatile manufacturability with little loss of mechanical properties in comparison to continuous reinforcement. Property prediction, failure behavior, and the effects of microstructural variation for these materials are not yet well explored. The finite element method was used to evaluate large domains encompassing characteristic discontinuous microstructures of thermoplastic matrix (PMMA) composites reinforced with short 3 to 5 mm carbon fibers with a high degree of alignment and conventional volume fractions. Virtual tests were performed on highly detailed microstructural simulations which included fiber‐matrix interface representation along with uniform or misaligned fiber morphologies. Stiffness, strength, and failure mechanisms were analyzed. It was shown that for ideal uniformly aligned short fiber reinforcements, the material maintains a high modulus within 95% of an equivalent continuous fiber‐reinforced polymer, along with relatively high strength at 80% of a carbon fiber reinforced polymer (CFRP). Failure modes depended on the toughness of the fiber‐matrix interface, transitioning from fiber rupture to a weaker fiber pullout failure for low interface properties. Simulations indicated that significant fiber misalignments on the order of 15% of fibers at ±15° off‐axis could sharply reduce local strength in the misaligned region to roughly 20% of the continuous fiber strength. Although partially affected by property dropoff owing to fiber off‐axis misalignment, this weakening was largely due to local matrix pockets in regions of high misalignment, which acted as failure initiation points. This work explores failure modes in highly aligned short fiber composites using detailed finite element based microstructural simulations. The results have helped identify key features in a morphology that demonstrate properties approaching those of continuous fiber reinforcement

    Failure investigation of pure titanium bleed air ducts in jet fighters

    No full text
    ‱The bleed air ducts in jet fighters failed due to brittle fracture initiated from corrosion pits.‱The ductility of titanium ducts was degraded by the ingress of hydrogen.‱Computational fracture analysis was conducted to estimate critical crack size and failure conditions.‱An advanced NDI method using electro-magnetic field has been developed to prevent similar failures. This paper describes the failure investigation of in-flight failures of bleed air ducts in jet fighters. Severe rupture had occurred at the bleed air duct during the flight that had caused the emergency landing situation. The tubular duct was manufactured using commercially pure titanium. An inspection revealed that all cracks occurred in the central portion of the bleed air duct. Examination of the fractured surfaces by using electron microscopy revealed that cracks initiated at multiple corrosion pits in the inner surface of the duct and these propagated by brittle cleavage cracking with occasional areas of fatigue striations induced by in-service cyclic pressure. Fractography, chemical analysis, and metallographic analysis confirmed that brittle fracture involved the ingress of hydrogen into a duct surface. The hydrogen effectively decreased the ductility of the duct which contributed to brittle fracture. The final destructive rupture of the duct can be explained by fracture mechanics. The critical crack size and stress induced by conditions at or near the operating load were estimated based on computational fracture analysis to explore the fracture mechanism. Asa consequence, a novel nondestructive inspection method has been developed to prevent such failures in future
    corecore