25 research outputs found
One-step Multiplex Transgenesis via Sleeping Beauty Transposition in Cattle
Genetically modified cattle are important for developing new biomedical models and for an improved understanding of the pathophysiology of zoonotic diseases. However, genome editing and genetic engineering based on somatic cell nuclear transfer suffer from a low overall efficiency. Here, we established a highly efficient one-step multiplex gene transfer system into the bovine genome.Fil: Garrels, Wiebke. Institut fĂŒr Nutztiergenetik; AlemaniaFil: Talluri, Thirumala R.. Institut fĂŒr Nutztiergenetik; AlemaniaFil: Apfelbaum, Ronja. Institut fĂŒr Nutztiergenetik; AlemaniaFil: CarratalĂĄ, Yanet P.. Institut fĂŒr Nutztiergenetik; AlemaniaFil: Bosch, Pablo. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Departamento de BiologĂa Molecular; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - CĂłrdoba; ArgentinaFil: Pötzsch, Kerstin. Paul Ehrlich Institute; AlemaniaFil: Grueso, Esther. Paul Ehrlich Institute; AlemaniaFil: Ivics, Zoltan. Paul Ehrlich Institute; AlemaniaFil: Kues, Wilfred. Institut fĂŒr Nutztiergenetik; Alemani
Genotype-Independent Transmission of Transgenic Fluorophore Protein by Boar Spermatozoa
Recently, we generated transposon-transgenic boars (Sus scrofa), which carry three monomeric copies of a fluorophore marker gene. Amazingly, a ubiquitous fluorophore expression in somatic, as well as in germ cells was found. Here, we characterized the prominent fluorophore load in mature spermatozoa of these animals. Sperm samples were analyzed for general fertility parameters, sorted according to X and Y chromosome-bearing sperm fractions, assessed for potential detrimental effects of the reporter, and used for inseminations into estrous sows. Independent of their genotype, all spermatozoa were uniformly fluorescent with a subcellular compartmentalization of the fluorophore protein in postacrosomal sheath, mid piece and tail. Transmission of the fluorophore protein to fertilized oocytes was shown by confocal microscopic analysis of zygotes. The monomeric copies of the transgene segregated during meiosis, rendering a certain fraction of the spermatozoa non-transgenic (about 10% based on analysis of 74 F1 offspring). The genotype-independent transmission of the fluorophore protein by spermatozoa to oocytes represents a non-genetic contribution to the mammalian embryo
Establishment of cell-based transposon-mediated transgenesis in cattle
Transposon-mediated transgenesis is a well-established tool for genome modification in small animal models. However, translation of this active transgenic method to large animals warrants further investigations. Here, the piggyBac (PB) and sleeping beauty (SB) transposon systems were assessed for stable gene transfer into the cattle genome. Bovine fibroblasts were transfected either with a helper-independent PB system or a binary SB system. Both transposons were highly active in bovine cells increasing the efficiency of DNA integration up to 88 times over basal nonfacilitated integrations in a colony formation assay. SB transposase catalyzed multiplex transgene integrations in fibroblast cells transfected with the helper vector and two donor vectors carrying different transgenes (fluorophore and neomycin resistance). Stably transfected fibroblasts were used for SCNT and on in vitro embryo culture, morphologically normal blastocysts that expressed the fluorophore were obtained with both transposon systems. The data indicate that transpositionis a feasible approach for genetic engineering in the cattle genome.Fil: Alessio, Ana Paula. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario; Argentina. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Departamento de BiologĂa Molecular; ArgentinaFil: Fili, Alejandro. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario; Argentina. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Departamento de BiologĂa Molecular; ArgentinaFil: Garrels, Wiebke. Institut fĂŒr Nutztiergenetik; Alemania. Gottfried Wilhelm Leibniz UniversitĂ€t Hannover; AlemaniaFil: Forcato, Diego Oscar. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario; Argentina. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Departamento de BiologĂa Molecular; ArgentinaFil: Olmos Nicotra, Maria Florencia. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario; Argentina. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Departamento de BiologĂa Molecular; ArgentinaFil: Liaudat, Ana Cecilia. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario; Argentina. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Departamento de BiologĂa Molecular; ArgentinaFil: Bevacqua, Romina Jimena. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario; Argentina. Universidad de Buenos Aires. Facultad de AgronomĂa. PabellĂłn de Zootecnica. Laboratorio de BiotecnologĂa Animal; ArgentinaFil: Savy, Virginia. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario; Argentina. Universidad de Buenos Aires. Facultad de AgronomĂa. PabellĂłn de Zootecnica. Laboratorio de BiotecnologĂa Animal; ArgentinaFil: Hiriart, MarĂa InĂ©s. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario; Argentina. Universidad de Buenos Aires. Facultad de AgronomĂa. PabellĂłn de Zootecnica. Laboratorio de BiotecnologĂa Animal; ArgentinaFil: Talluri, Thirumala R.. Institut fĂŒr Nutztiergenetik; AlemaniaFil: Owens, Jesse B.. University of Hawaii at Manoa; Estados UnidosFil: Ivics, ZoltĂĄn. Paul-Ehrlich-Institute; AlemaniaFil: Salamone, Daniel Felipe. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario; Argentina. Universidad de Buenos Aires. Facultad de AgronomĂa. PabellĂłn de Zootecnica. Laboratorio de BiotecnologĂa Animal; ArgentinaFil: Moisyadi, Stefan. University of Hawaii at Manoa; Estados UnidosFil: Kues, Wilfried A.. Institut fĂŒr Nutztiergenetik; AlemaniaFil: Bosch, Pablo. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario; Argentina. Universidad Nacional de RĂo Cuarto. Facultad de Ciencias Exactas FisicoquĂmicas y Naturales. Departamento de BiologĂa Molecular; Argentin
Germline Transgenic Pigs by Sleeping Beauty Transposition in Porcine Zygotes and Targeted Integration in the Pig Genome
Genetic engineering can expand the utility of pigs for modeling human diseases, and for developing advanced therapeutic approaches. However, the inefficient production of transgenic pigs represents a technological bottleneck. Here, we assessed the hyperactive Sleeping Beauty (SB100X) transposon system for enzyme-catalyzed transgene integration into the embryonic porcine genome. The components of the transposon vector system were microinjected as circular plasmids into the cytoplasm of porcine zygotes, resulting in high frequencies of transgenic fetuses and piglets. The transgenic animals showed normal development and persistent reporter gene expression for >12 months. Molecular hallmarks of transposition were confirmed by analysis of 25 genomic insertion sites. We demonstrate germ-line transmission, segregation of individual transposons, and continued, copy number-dependent transgene expression in F1-offspring. In addition, we demonstrate target-selected gene insertion into transposon-tagged genomic loci by Cre-loxP-based cassette exchange in somatic cells followed by nuclear transfer. Transposase-catalyzed transgenesis in a large mammalian species expands the arsenal of transgenic technologies for use in domestic animals and will facilitate the development of large animal models for human diseases
Rapid non-invasive genotyping of reporter transgenic mammals
Here we describe a non-invasive method for rapid and highly reproducible genotyping of transgenic mammals with ubiquitous expression of fluorophore reporters. Hair samples from transgenic mice and pigs with systemic expression of the fluorophore reporter Venus were analyzed with a fluorescence microscope in few minutes. The hair samples can be preserved for long-term storage at ambient temperature conditions. This non-invasive method is useful for genotyping of transgenic large animals and contributes to animal welfare by reducing stress and discomfort of the animals during sample collection
Assessment of Fetal Cell Chimerism in Transgenic Pig Lines Generated by <i>Sleeping Beauty</i> Transposition
<div><p>Human cells migrate between mother and fetus during pregnancy and persist in the respective host for long-term after birth. Fetal microchimerism occurs also in twins sharing a common placenta or chorion. Whether microchimerism occurs in multiparous mammals such as the domestic pig, where fetuses have separate placentas and chorions, is not well understood. Here, we assessed cell chimerism in litters of wild-type sows inseminated with semen of transposon transgenic boars. Segregation of three independent monomeric transposons ensured an excess of transgenic over non-transgenic offspring in every litter. Transgenic siblings (nâ=â35) showed robust ubiquitous expression of the reporter transposon encoding a fluorescent protein, and provided an unique resource to assess a potential cell trafficking to non-transgenic littermates (nâ=â7) or mothers (nâ=â4). Sensitive flow cytometry, fluorescence microscopy, and real-time PCR provided no evidence for microchimerism in porcine littermates, or piglets and their mothers in both blood and solid organs. These data indicate that the epitheliochorial structure of the porcine placenta effectively prevents cellular exchange during gestation.</p></div
Assessment of reporter-positive cells in solid organs.
<p>A, B) Cryosections of heart and testis of a Venus-transposon pig are depicted under specific excitation of Venus and brightfield conditions (insets). C) Heart, and D) testis sections of a non-transgenic littermate were recorded under identical camera settings. White barâ=â50 ”m.</p
Assessment of potential chimerism in non-transgenic littermates and sows.
<p>ID, unique identification number; Ct, threshhold cycle in a quantitative real time PCR;</p><p>â, no threshold cycle reached during PCR;</p><p>n.d., not done;</p>§<p>, sow with two âtransgenicâ pregnancies.</p