112 research outputs found

    NASA Contractor Report: Guidelines for Proof Test Analysis

    Get PDF
    These Guidelines integrate state-of-the-art Elastic-Plastic Fracture Mechanics (EPFM) and proof test implementation issues into a comprehensive proof test analysis procedure in the form of a Road Map which identifies the types of data, fracture mechanics based parameters, and calculations needed to perform flaw screening and minimum proof load analyses of fracture critical components. Worked examples are presented to illustrate the application of the Road Map to proof test analysis. The state-of-the-art fracture technology employed in these Guidelines is based on the EPFM parameter, J, and a pictorial representation of a J fracture analysis, called the Failure Assessment Diagram (FAD) approach. The recommended fracture technology is validated using finite element J results, and laboratory and hardware fracture test results on the nickel-based superalloy IN-718, the aluminum alloy 2024-T351 1, and ferritic pressure vessel steels. In all cases the laboratory specimens and hardware failed by ductile mechanisms. Advanced proof test analyses involving probability analysis and Multiple Cycle Proof Testing (MCPT) are addressed. Finally, recommendations are provided on to how to account for the effects of the proof test overload on subsequent service fatigue and fracture behaviors

    Guidelines for Proof Test Analysis

    Get PDF
    These guidelines integrate state-of-the-art elastic-plastic fracture mechanics (EPFM) and proof test implementation issues into a comprehensive proof test analysis procedure in the form of a road map which identifies the types of data, fracture mechanics based parameters, and calculations needed to perform flaw screening and minimum proof load analyses of fracture critical components. Worked examples are presented to illustrate the application of the road map to proof test analysis. The state-of-the art fracture technology employed in these guidelines is based on the EPFM parameter, J, and a pictorial representation of a J fracture analysis, called the failure assessment diagram (FAD) approach. The recommended fracture technology is validated using finite element J results, and laboratory and hardware fracture test results on the nickel-based superalloy Inconel 718, the aluminum alloy 2024-T3511, and ferritic pressure vessel steels. In all cases the laboratory specimens and hardware failed by ductile mechanisms. Advanced proof test analyses involving probability analysis and multiple-cycle proof testing (MCPT) are addressed. Finally, recommendations are provided on how to account for the effects of the proof test overload on subsequent service fatigue and fracture behaviors

    SIOP CNS GCT 96: final report of outcome of a prospective, multinational nonrandomized trial for children and adults with intracranial germinoma, comparing craniospinal irradiation alone with chemotherapy followed by focal primary site irradiation for patients with localized disease.

    Get PDF
    We conducted a nonrandomized international study for intracranial germinoma that compared chemotherapy followed by local radiotherapy with reduced-dose craniospinal irradiation (CSI) alone, to determine whether the combined treatment regimen produced equivalent outcome and avoided irradiation beyond the primary tumor site(s). Patients with localized germinoma received either CSI or 2 courses of carboplatin and etoposide alternating with etoposide and ifosfamide, followed by local radiotherapy. Metastatic patients received CSI with focal boosts to primary tumor and metastatic sites, with the option to be preceded with chemotherapy. Patients with localized germinoma (n 190) received either CSI alone (n 125) or combined therapy (n 65), demonstrating no differences in 5-year event-free or overall survival, but a difference in progression-free survival (0.97 0.02 vs 0.88 0.04; P .04). Seven of 65 patients receiving combined treatment experienced relapse (6 with ventricular recurrence outside the primary radiotherapy field), and only 4 of 125 patients treated with CSI alone experienced relapse (all at the primary tumor site). Metastatic patients (n 45) had 0.98 0.023 event-free and overall survival. Localized germinoma can be treated with reduced dose CSI alone or with chemotherapy and reduced-field radiotherapy. The pattern of relapse suggests inclusion of ventricles in the radiation field. Reduced-dose craniospinal radiation alone is effective in metastatic disease

    The Effects of Helium on High-Temperature Ductility of Sandvik 12R72HV and Inco IN-744x.

    Get PDF

    Defining Potential Therapeutic Targets in Coronavirus Disease 2019: A Cross-Sectional Analysis of a Single-Center Cohort

    Get PDF
    OBJECTIVES: Multiple mechanisms have been proposed to explain disease severity in coronavirus disease 2019. Therapeutic approaches need to be underpinned by sound biological rationale. We evaluated whether serum levels of a range of proposed coronavirus disease 2019 therapeutic targets discriminated between patients with mild or severe disease. DESIGN: A search of ClinicalTrials.gov identified coronavirus disease 2019 immunological drug targets. We subsequently conducted a retrospective observational cohort study investigating the association of serum biomarkers within the first 5 days of hospital admission relating to putative therapeutic biomarkers with illness severity and outcome. SETTING: University College London, a tertiary academic medical center in the United Kingdom. PATIENTS: Patients admitted to hospital with a diagnosis of coronavirus disease 2019. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Eighty-six patients were recruited, 44 (51%) with mild disease and 42 (49%) with severe disease. We measured levels of 10 cytokines/signaling proteins related to the most common therapeutic targets (granulocyte-macrophage colony-stimulating factor, interferon-α2a, interferon-β, interferon-γ, interleukin-1β, interleukin-1 receptor antagonist, interleukin-6, interleukin-7, interleukin-8, tumor necrosis factor-α), immunoglobulin G antibodies directed against either coronavirus disease 2019 spike protein or nucleocapsid protein, and neutralization titers of antibodies. Four-hundred seventy-seven randomized trials, including 168 different therapies against 83 different pathways, were identified. Six of the 10 markers (interleukin-6, interleukin-7, interleukin-8, interferon-α2a, interferon-β, interleukin-1 receptor antagonist) discriminated between patients with mild and severe disease, although most were similar or only modestly raised above that seen in healthy volunteers. A similar proportion of patients with mild or severe disease had detectable spike protein or nucleocapsid protein immunoglobulin G antibodies with equivalent levels between groups. Neutralization titers were higher among patients with severe disease. CONCLUSIONS: Some therapeutic and prognostic biomarkers may be useful in identifying coronavirus disease 2019 patients who may benefit from specific immunomodulatory therapies, particularly interleukin-6. However, biomarker absolute values often did not discriminate between patients with mild and severe disease or death, implying that these immunomodulatory treatments may be of limited benefit

    STEM education in the twenty-first century: learning at work-an exploration of design and technology teacher perceptions and practices

    Get PDF
    Teachers’ knowledge of STEM education, their understanding, and pedagogical application of that knowledge is intrinsically linked to the subsequent effectiveness of STEM delivery within their own practice; where a teacher’s knowledge and understanding is deficient, the potential for pupil learning is ineffective and limited. Set within the context of secondary age phase education in England and Wales (11–16 years old), this paper explores how teachers working within the field of design and technology education acquire new knowledge in STEM; how understanding is developed and subsequently embedded within their practice to support the creation of a diverse STEM-literate society. The purpose being to determine mechanisms by which knowledge acquisition occurs, to reconnoitre potential implications for education and learning at work, including consideration of the role which new technologies play in the development of STEM knowledge within and across contributory STEM subject disciplines. Underpinned by an interpretivist ontology, work presented here builds upon the premise that design and technology is an interdisciplinary educational construct and not viewed as being of equal status to other STEM disciplines including maths and science. Drawing upon the philosophical field of symbolic interactionism and constructivist grounded theory, work embraces an abductive methodology where participants are encouraged to relate design and technology within the context of STEM education. Emergent findings are discussed in relation to their potential to support teachers’ educational development for the advancement of STEM literacy, and help secure design and technology’s place as a subject of value within a twenty-first Century curriculum

    A RAB5/RAB4 recycling circuitry induces a proteolytic invasive program and promotes tumor dissemination

    Get PDF
    The mechanisms by which tumor cells metastasize and the role of endocytic proteins in this process are not well understood. We report that overexpression of the GTPase RAB5A, a master regulator of endocytosis, is predictive of aggressive behavior and metastatic ability in human breast cancers. RAB5A is necessary and sufficient to promote local invasion and distant dissemination of various mammary and nonmammary tumor cell lines, and this prometastatic behavior is associated with increased intratumoral cell motility. Specifically, RAB5A is necessary for the formation of invadosomes, membrane protrusions specialized in extracellular matrix (ECM) degradation. RAB5A promotes RAB4- and RABENOSYN-5-dependent endo/exocytic cycles (EECs) of critical cargos (membrane-type 1 matrix metalloprotease [MT1-MMP] and \u3b23 integrin) required for invadosome formation in response to motogenic stimuli. This trafficking circuitry is necessary for spatially localized hepatocyte growth factor (HGF)/MET signaling that drives invasive, proteolysis-dependent chemotaxis in vitro and for conversion of ductal carcinoma in situ to invasive ductal carcinoma in vivo. Thus, RAB5A/RAB4 EECs promote tumor dissemination by controlling a proteolytic, mesenchymal invasive program
    corecore