87 research outputs found

    FOXP3 Inhibitory Peptide P60 Increases Efficacy of Cytokine-induced Killer Cells against Renal and Pancreatic Cancer Cells

    Get PDF
    Background/Aim: Cytokine-induced killer (CIK) cells are ex vivo expanded major histocompatibility complex (MHC)-unrestricted cytotoxic cells with promising effects against a variety of cancer types. Regulatory T-cells (T-reg) have been shown to reduce the effectiveness of CIK cells against tumor cells. Peptide P60 has been shown to inhibit the immunosuppressive functions of T-regs. This study aimed at examining the effect of p60 on CIK cells efficacy against renal and pancreatic cancer cells. Materials and Methods: The effect of P60 on CIK cytotoxicity was examined using flow cytometry, WST-8-based cell viability assay and interferon γ (IFNγ) ELISA. Results: P60 treatment resulted in a significant decrease in the viability of renal and pancreatic cancer cell lines co-cultured with CIK cells. No increase in IFNγ secretion from CIK cells was detected following treatment with P60. P60 caused no changes in the distribution of major effector cell populations in CIK cell cultures. Conclusion: P60 may potentiate CIK cell cytotoxicity against tumor cells

    OMRT-3. Longitudinal analysis of diffuse glioma reveals cell state dynamics at recurrence associated with changes in genetics and the microenvironment

    Get PDF
    Diffuse glioma is an aggressive brain cancer that is characterized by a poor prognosis and a universal resistance to therapy. The evolutionary processes behind this resistance remain unclear. Previous studies by the Glioma Longitudinal Analysis (GLASS) Consortium have indicated that therapy-induced selective pressures shape the genetic evolution of glioma in a stochastic manner. However, single-cell studies have revealed that malignant glioma cells are highly plastic and transition their cell state in response to diverse challenges, including changes in the microenvironment and the administration of standard-of-care therapy. Interactions between these factors remain poorly understood, making it difficult to predict how a patient’s tumor will evolve from diagnosis to recurrence. To interrogate the factors driving therapy resistance in diffuse glioma, we collected and analyzed RNA- and/or DNA-sequencing data from temporally separated tumor pairs of 292 adult patients with IDH-wild-type or IDH-mutant glioma. Recurrent tumors exhibited diverse changes that were attributable to changes in anatomic composition, somatic alterations, and microenvironment interactions. Hypermutation and acquired CDKN2A homozygous deletions associated with an increase in proliferating stem-like malignant cells at recurrence in both glioma subtypes, reflecting active tumor expansion. IDH-wild-type tumors were more invasive at recurrence, and their malignant cells exhibited increased expression of neuronal signaling programs that reflected a possible role for neuronal interactions in promoting glioma progression. Mesenchymal transition was associated with the presence of a specific myeloid cell state defined by unique ligand-receptor interactions with malignant cells, providing opportunities to target this transition through therapy. Collectively, our results uncover recurrence-associated changes in genetics and the microenvironment that can be targeted to shape disease progression following initial diagnosis

    Motion control strategies for smart floating cranes

    No full text
    Floating structures have raised interest in the recent years for different applications, from living and farming at sea to renewable energy production. To support the logistics on the float- ing structures, floating cranes are necessary and their designs are constantly improved. In- creasing developments in the automation industry paved the way for automated crane opera- tions. In this work, motion control of a smart crane is presented with particular attention to the performance under wave motion. In this research, a scaled down, two-dimensional math- ematical model of a gantry crane is derived using Lagrangian mechanics and DC motors dy- namics. This results in a nonlinear system that is capable of simultaneous traversing and hoist- ing a container. The system is simulated in MATLAB Simulink environment and a proportional-derivative control and a state feedback control are designed and implemented. Their robustness is explored by modelling sensor behavior, external disturbances and floating platform dynamics. Both control strategies were able to keep stability in a disturbed system. During simulation, the sway angles never exceed 10 degrees. Smaller oscillations occurred us- ing the state feedback control. Therefore, it creates a smoother response compared to the pro- portional derivative control, which ultimately translates to increased safety, turnover rate and durability of the crane.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Transport Engineering and Logistic
    corecore