24 research outputs found
Effects of Amphetamine on Striatal Dopamine Release, Open-Field Activity, and Play in Fischer 344 and Sprague–Dawley Rats
Previous work from our laboratories has shown that juvenile Fischer 344 (F344) rats are less playful than other strains and also appear to be compromised in dopamine (DA) functioning. To determine whether the dysfunctional play in this strain is associated with deficits in the handling and delivery of vesicular DA, the following experiments assessed the extent to which F344 rats are differentially sensitive to the effects of amphetamine. When exposed to amphetamine, striatal slices obtained from F344 rats showed a small increase in unstimulated DA release when compared with slices from Sprague–Dawley rats; they also showed a more rapid high K+-mediated release of DA. These data provide tentative support for the hypothesis that F344 rats have a higher concentration of cytoplasmic DA than Sprague–Dawley rats. When rats were tested for activity in an open field, F344 rats presented a pattern of results that was consistent with either an enhanced response to amphetamine (3 mg/kg) or a more rapid release of DA (10 mg/kg). Although there was some indication that amphetamine had a dose-dependent differential effect on play in the two strains, play in F344 rats was not enhanced to any degree by amphetamine. Although these results are not consistent with our working hypothesis that F344 rats are less playful because of a deficit in vesicular release of DA, they still suggest that this strain may be a useful model for better understanding the role of DA in social behavior during the juvenile period
Dysfunctional play and dopamine physiology in the Fischer 344 rat
Juvenile Fischer 344 rats are known to be less playful than other inbred strains, although the neurobiological substrate(s) responsible for this phenotype is uncertain. In the present study, Fischer 344 rats were compared to the commonly used outbred Sprague-Dawley strain on several behavioral and physiological parameters in order to ascertain whether the lack of play may be related to compromised activity of brain dopamine (DA) systems. As expected, Fischer 344 rats were far less playful than Sprague-Dawley rats, with Fischer 344 rats less likely to initiate playful contacts with a playful partner and less likely to respond playfully to these contacts. We also found that Fischer 344 rats showed less of a startle response and greater pre-pulse inhibition (PPI), especially at higher prepulse intensities. The increase in PPI seen in the Fischer 344 rat could be due to reduced DA modulation of sensorimotor gating and neurochemical measures were consistent with Fischer 344 rats releasing less DA than Sprague-Dawley rats. Fast scan cyclic voltammetry (FSCV) revealed Fischer 344 rats had less evoked DA release in dorsal and ventral striatal brain slices and high-performance liquid chromatography revealed Fischer 344 rats to have less DA turnover in the striatum and prefrontal cortex. We also found DA-dependent forms of cortical plasticity were deficient in the striatum and prefrontal cortex of the Fischer 344 rat. Taken together, these data indicate that deficits in play and enhanced PPI of Fischer 344 rats may be due to reduced DA modulation of corticostriatal and mesolimbic/mesocortical circuits critical to the execution of these behaviors
Progesterone regulation of synaptic transmission and plasticity in rodent hippocampus
Ovarian hormones influence memory formation by eliciting changes in neural activity. The effects of various concentrations of progesterone (P4) on synaptic transmission and plasticity associated with long-term potentiation (LTP) and long-term depression (LTD) were studied using in vitro hippocampal slices. Extracellular studies show that the highest concentration of P4 tested (10−6 M) decreased the baseline synaptic transmission and magnitude of LTP, but did not affect LTD. Intracellular studies suggest the P4 effect to be mediated, at least in part, by GABAA activity. These results establish a general effect of P4 on synaptic transmission, multiple forms of synaptic plasticity, and a possible mechanism of P4 action in hippocampus
Striatal Direct and Indirect Pathway Output Structures Are Differentially Altered in Mouse Models of Huntington's Disease
The present study examined synaptic communication between direct and indirect output pathway striatal medium-sized spiny neurons (MSNs) and their target structures, the substantia nigra pars reticulata (SNr) and the external globus pallidus (GPe) in two mouse models of Huntington's disease (HD). Cre recombination, optogenetics, and whole-cell patch-clamp recordings were used to determine alterations in intrinsic and synaptic properties of SNr and GPe neurons from both male and female symptomatic R6/2 (>60 d) and presymptomatic (2 months) or symptomatic (10-12 months) YAC128 mice. Cell membrane capacitance was decreased, whereas input resistance was increased in SNr neurons from R6/2, but not YAC128 mice. The amplitude of GABAergic responses evoked by optogenetic stimulation of direct pathway terminals was reduced in SNr neurons of symptomatic mice of both models. A decrease in spontaneous GABA synaptic activity, in particular large-amplitude events, in SNr neurons also was observed. Passive membrane properties of GPe neurons were not different between R6/2 or YAC128 mice and their control littermates. Similarly, the amplitude of GABA responses evoked by activation of indirect pathway MSN terminals and the frequency of spontaneous GABA synaptic activity were similar in HD and control animals. In contrast, the decay time of the evoked GABA response was significantly longer in cells from HD mice. Interestingly, activation of indirect pathway MSNs within the striatum evoked larger-amplitude responses in direct pathway MSNs. Together, these results demonstrate differential alterations in responses evoked by direct and indirect pathway terminals in SNr and GPe leading to striatal output imbalance and motor dysfunction.SIGNIFICANCE STATEMENT Previous work on Huntington's disease (HD) focused on striatal medium-sized spiny neurons (MSNs) almost exclusively. Little is known about the effects that alterations in the striatum have on output structures of the direct and indirect pathways, the substantia nigra pars reticulata (SNr) and the external segment of the globus pallidus (GPe), respectively. We combined electrophysiological and optogenetic methods to examine responses evoked by selective activation of terminals of direct and indirect pathway MSNs in SNr and GPe neurons in two mouse models of HD. We show a differential disruption of synaptic communication between the direct and indirect output pathways of the striatum with their target regions leading to an imbalance of striatal output, which will contribute to motor dysfunction
Recommended from our members
Striatal Direct and Indirect Pathway Output Structures Are Differentially Altered in Mouse Models of Huntington's Disease
The present study examined synaptic communication between direct and indirect output pathway striatal medium-sized spiny neurons (MSNs) and their target structures, the substantia nigra pars reticulata (SNr) and the external globus pallidus (GPe) in two mouse models of Huntington's disease (HD). Cre recombination, optogenetics, and whole-cell patch-clamp recordings were used to determine alterations in intrinsic and synaptic properties of SNr and GPe neurons from both male and female symptomatic R6/2 (>60 d) and presymptomatic (2 months) or symptomatic (10-12 months) YAC128 mice. Cell membrane capacitance was decreased, whereas input resistance was increased in SNr neurons from R6/2, but not YAC128 mice. The amplitude of GABAergic responses evoked by optogenetic stimulation of direct pathway terminals was reduced in SNr neurons of symptomatic mice of both models. A decrease in spontaneous GABA synaptic activity, in particular large-amplitude events, in SNr neurons also was observed. Passive membrane properties of GPe neurons were not different between R6/2 or YAC128 mice and their control littermates. Similarly, the amplitude of GABA responses evoked by activation of indirect pathway MSN terminals and the frequency of spontaneous GABA synaptic activity were similar in HD and control animals. In contrast, the decay time of the evoked GABA response was significantly longer in cells from HD mice. Interestingly, activation of indirect pathway MSNs within the striatum evoked larger-amplitude responses in direct pathway MSNs. Together, these results demonstrate differential alterations in responses evoked by direct and indirect pathway terminals in SNr and GPe leading to striatal output imbalance and motor dysfunction.SIGNIFICANCE STATEMENT Previous work on Huntington's disease (HD) focused on striatal medium-sized spiny neurons (MSNs) almost exclusively. Little is known about the effects that alterations in the striatum have on output structures of the direct and indirect pathways, the substantia nigra pars reticulata (SNr) and the external segment of the globus pallidus (GPe), respectively. We combined electrophysiological and optogenetic methods to examine responses evoked by selective activation of terminals of direct and indirect pathway MSNs in SNr and GPe neurons in two mouse models of HD. We show a differential disruption of synaptic communication between the direct and indirect output pathways of the striatum with their target regions leading to an imbalance of striatal output, which will contribute to motor dysfunction
Altered membrane properties and firing patterns of external globus pallidus neurons in the R6/2 mouse model of Huntington's disease
In mouse models of Huntington's disease (HD), striatal neuron properties are significantly altered. These alterations predict changes in striatal output regions. However, little is known about alterations in those regions. The present study examines changes in passive and active membrane properties of neurons in the external globus pallidus (GPe), the first relay station of the indirect pathway, in the R6/2 mouse model of juvenile HD at presymptomatic (1 month) and symptomatic (2 month) stages. In GPe, two principal types of neurons can be distinguished based on firing properties and the presence (type A) or absence (type B) of Ih currents. In symptomatic animals (2 month), cell membrane capacitance and input resistance of type A neurons were increased compared with controls. In addition, action potential afterhyperpolarization amplitude was reduced. Although the spontaneous firing rate of GPe neurons was not different between control and R6/2 mice, the number of spikes evoked by depolarizing current pulses was significantly reduced in symptomatic R6/2 animals. In addition, these changes were accompanied by altered firing patterns evidenced by increased interspike interval variation and increased number of bursts. Blockade of GABAA receptors facilitated bursting activity in R6/2 mice but not in control littermates. Thus, alterations in firing patterns could be caused by changes in intrinsic membrane conductances and modulated by synaptic inputs. © 2016 Wiley Periodicals, Inc
RVG-Mediated Calpain2 Gene Silencing in the Brain Impairs Learning and Memory
In the central nervous system, two calpain isoforms are highly expressed: calpain1 and calpain2. Here, we show for the first time that activation of the calpain isoform, calpain2, is a necessary event in hippocampal synaptic plasticity and in learning and memory. We developed a fluorescence resonance energy transfer–based animal model to monitor in vivo calpain activation in single cells and in real time. Additionally, utilizing a novel rabies virus glycoprotein-chimeric peptide, which enabled the transvascular delivery of small interfering RNA to the brain against calpain2, we down-regulated the calpain2 isoform in vivo. Calpain2 gene silencing eliminated long-term potentiation and impaired learning and memory. Our results not only identify the calpain2 isoform as a critical mediator in learning and memory but also highlight an innovative, highly efficient calpain2-targeting peptide capable of isoform-specific gene silencing in the brain. We anticipate these innovative technologies and our better understanding of the calpain machinery, particularly of the calpain2 isoform, will have substantial influence on future translational studies, attracting considerable interest in the use of calpain models and calpain-specific inhibitors in the development of therapeutics