70 research outputs found
A method for accurate texture determination of thin oxide films by glancing-angle laboratory X-ray diffraction
The present article describes a modification to the standard method of glancing-angle X-ray diffraction for accurate measurement of the texture of thin oxide films. The technique resolves the problems caused by overlapping diffraction peaks originating from multiphase materials with asymmetric unit cells and the peak broadening associated with sample tilt during glancing-angle texture measurement. The entire 2θ range of interest is recorded as a function of sample orientation, and the integrated intensities from different crystallographic planes are extracted from fitted diffraction profiles. The technique allows for pole figures to be plotted from diffraction peaks that could otherwise not be resolved and separates contributions from neighbouring peaks, leading to a more accurate representation of the existing oxide texture. The proposed method has been used for determining texture in a 3 µm layer of monoclinic/tetragonal zirconium oxide grown during aqueous corrosion testing and has been verified by additional synchrotron X-ray diffraction measurements.</jats:p
Investigating Irradiation Creep of Zircaloy-4 Using In-Situ Proton Irradiation and Transmission Electron Microscopy
Under normal operating conditions, zirconium alloys in Pressurised Water Reactors (PWRs) can plastically deform in the presence of irradiation at stresses lower than the yield stress, resulting in component distortion and having a cascading affect upon other degradation mechanisms. In this feasibility study, dog-bone recrystallised annealed (RXA) Zircaloy-4 specimens were strained while under transmission electron microscopy (TEM) observation, producing point defects and dislocations. Repeated stop-go irradiation of 700 KeV Kr2+ ions at a flux of 1 x 1016 ions / m2s was found to impact dislocation movement, as is postulated in several mechanisms of irradiation creep. By comparing stills taken from video footage of dislocations during irradiation, the comparative speeds of individual dislocations, as well as general areas of crystallographic defects may be examined. By measuring the relative movement of features surrounding an electropolishing-induced hole at the centre of the gauge length, the effect of irradiation on the local strain can be analysed, with the results informing discussion around previously proposed creep mechanisms, such as I-Creep and the possibility of irradiation cascades causing repeated dislocation unpinning. Results suggest the impact of dislocation movement upon irradiation creep could be significant, although the contribution of mass transport mechanisms remain unclear
The effect of Sn concentration on oxide texture and microstructure formation in zirconium alloys
AbstractThe development of oxide texture and microstructure formed on two zirconium alloys with differing Sn contents (Zr–1Nb–1Sn–0.1Fe, i.e. ZIRLO™ and Zr–1.0Nb–0.1Fe) has been investigated using transmission Kikuchi diffraction (TKD) in the scanning electron microscope (SEM) and automated crystal orientation mapping in the transmission electron microscope (TEM). Bulk texture measurements were also performed using electron backscatter diffraction (EBSD) in order to quantify and compare the oxide macrotexture development. The Sn-free alloy showed significantly improved corrosion performance by delay of the transition region and reduced levels of hydrogen pickup. The macroscopic texture and grain misorientation analysis of the oxide films showed that the improved corrosion performance and reduced hydrogen pick up can be correlated with increased oxide texture strength, the improved oxide grain alignment resulting in longer, more protective columnar grain growth. A lower tetragonal phase fraction is also observed in the Sn-free alloy. This results in less transformation to the stable monoclinic phase during oxide growth, which leads to reduced cracking and interconnected porosity and also to the formation of larger, well-aligned monoclinic grains. It is concluded that the Zr–1.0Nb–0.1Fe alloy is more resistant to hydrogen pickup due the formation of a denser oxide with a larger columnar grain structure
Microstructural characterisation and mechanical properties of Ti-5Al-5V-5Mo-3Cr built by wire and arc additive manufacture
The as-deposited microstructure and mechanical properties of the near-β titanium alloy Ti-5Al-5V-5Mo-3Cr (Ti-5553) produced by wire-arc additive manufacture (WAAM) were investigated, to understand its microstructural evolution under WAAM deposition conditions and to establish correlations between the microstructure features formed and the thermal cycles experienced during deposition. The ‘as-deposited’ Ti-5553 WAAM material exhibited higher tensile strengths than other as-deposited additively manufactured Ti-5553 deposits previously reported in the literature, but had significant anisotropy in elongation, as a consequence of the coarse and columnar β-grain structure that formed on solidification, which exhibited a strong {001}β⟨001⟩β cube texture. The multiple reheating cycles, inherent to the WAAM process, were recorded using a novel ‘harpoon’ thermocouple technique, and the α precipitation evolution was related to the thermal history. Electron probe microanalysis chemical maps revealed significant solute microsegregation during solidification, which influenced the subsequent precipitation due to its effect on the local β-phase stability. As each layer experienced more reheating cycles, the microstructure evolution could be ‘time resolved’ and the α laths were found to precipitate in a specific sequence of nucleation sites, starting at the β-grain boundaries and then inter-dendritically, where there was lower matrix β stability. However, after the reheating peak temperature was insufficiently high to have any further effect, the microstructure consisted of a relatively uniform distribution of α laths
Genetic mechanisms of critical illness in COVID-19.
Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 × 10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice
Common, low-frequency, rare, and ultra-rare coding variants contribute to COVID-19 severity
The combined impact of common and rare exonic variants in COVID-19 host genetics is currently insufficiently understood. Here, common and rare variants from whole-exome sequencing data of about 4000 SARS-CoV-2-positive individuals were used to define an interpretable machine-learning model for predicting COVID-19 severity. First, variants were converted into separate sets of Boolean features, depending on the absence or the presence of variants in each gene. An ensemble of LASSO logistic regression models was used to identify the most informative Boolean features with respect to the genetic bases of severity. The Boolean features selected by these logistic models were combined into an Integrated PolyGenic Score that offers a synthetic and interpretable index for describing the contribution of host genetics in COVID-19 severity, as demonstrated through testing in several independent cohorts. Selected features belong to ultra-rare, rare, low-frequency, and common variants, including those in linkage disequilibrium with known GWAS loci. Noteworthily, around one quarter of the selected genes are sex-specific. Pathway analysis of the selected genes associated with COVID-19 severity reflected the multi-organ nature of the disease. The proposed model might provide useful information for developing diagnostics and therapeutics, while also being able to guide bedside disease management. © 2021, The Author(s)
- …