15 research outputs found

    Detection of superparamagnetic nanoparticles for immunoassays

    Get PDF
    International audienceWe develop a completely integrated Lab-on-Chip (LoC) for easy, rapid and cost-effective immunoassays. The pathogen sensing system is composed of a microfluidic channel surrounded by planar microcoils which are responsible for the emission and the detection of magnetic fields. The system allows the detection and quantification of superparamagnetic beads used for immunoassays in a “sandwich” antigen-antibody configuration. We successfully tested this device with different concentrations of nanoparticles and determine the limit of detection of the prototype. These results are promising and are a step toward the creation of a portable pathogen sensing device

    A platform for stop-flow gradient generation to investigate chemotaxis

    Get PDF
    The ability of artificial microswimmers to respond to external stimuli and the mechanistical details of their origins belong to the most disputed challenges in interdisciplinary science. Therein, the creation of chemical gradients is technically challenging, because they quickly level out due to diffusion. Inspired by pivotal stopped flow experiments in chemical kinetics, we show that microfluidics gradient generation combined with a pressure feedback loop for precisely controlling the stop of the flows, can enable us to study mechanistical details of chemotaxis of artificial Janus micromotors, based on a catalytic reaction. We find that these copper Janus particles display a chemotactic motion along the concentration gradient in both, positive and negative direction and we demonstrate the mechanical reaction of the particles to unbalanced drag forces, explaining this behaviour

    A Generative Programming Approach to Developing Pervasive Computing Systems

    Get PDF
    International audienceDeveloping pervasive computing applications is a difficult task because it requires to deal with a wide range of issues: heterogeneous devices, entity distribution, entity coordination, low-level hardware knowledge... Besides requiring various areas of expertise, programming such applications involves writing a lot of administrative code to glue technologies together and to interface with both hardware and software components. This paper proposes a generative programming approach to providing programming, execution and simulation support dedicated to the pervasive computing domain. This approach relies on a domain-specific language, named DiaSpec, dedicated to the description of pervasive computing systems. Our generative approach factors out features of distributed systems technologies, making DiaSpec-specified software systems portable. The DiaSpec compiler is implemented and has been used to generate dedicated programming frameworks for a variety of pervasive computing applications, including detailed ones to manage the building of an engineering school

    Contributions à un microsystÚme électromagnétique et microfluidique pour la détection immunologique utilisant des nanoparticules magnétiques

    No full text
    L’augmentation continue de la circulation des populations et des biens ces derniĂšres dĂ©cennies accentue les risques de pandĂ©mie due Ă  un mauvais confinement des antigĂšnes dangereux Ă  leur rĂ©gion d’apparition. Il est donc crucial de dĂ©velopper une technique rapide de dĂ©tection de pathogĂšne pour prĂ©venir ces risques. Un projet multidisciplinaire a donc Ă©tait mis en place entre Sorbonne UniversitĂ© Ă  Paris et RWTH University Ă  JĂŒlich pour le dĂ©veloppement d’un dispositif laboratoire-sur-puce intĂ©grĂ© pour effectuer des tests immunologiques rapides, faciles et abordables. Ce dispositif de dĂ©tection de pathogĂšne est composĂ© d’un canal microfluidique entourĂ© de microbobines planaires en circuit imprimĂ© responsables de l’émission et de la dĂ©tection de champs magnĂ©tiques. Ainsi des nanoparticules magnĂ©tiques peuvent ĂȘtre dĂ©tectĂ©es et quantifiĂ©es puis ĂȘtre corrĂ©lĂ©es Ă  la prĂ©sence du pathogĂšne, en tant que marqueurs du test immunologique. Habituellement, l’étape de dĂ©tection de la prĂ©sence du pathogĂšne dans un Ă©chantillon se fait grĂące Ă  un signal fluorescent ou Ă©lectrochimique qui sont des techniques longues et avec une sensibilitĂ© limitĂ©e. En consĂ©quence, les tests immunologiques magnĂ©tiques semblent ĂȘtre une alternative intĂ©ressante. L’utilisation de canaux microfluidiques permet de n’utiliser qu’une trĂšs petite quantitĂ© d’échantillon pour effectuer un test. Pendant ce doctorat, l’objectif principal a Ă©tĂ© d’amĂ©liorer le prototype du dispositif et la fonctionnalisation de surface du canal microfluidique avec des anticorps.The ever-increasing exchange of people and goods these last decades creates pandemic risks that should be prevented by containing the hazardous antigens in the region of the outbreak. Therefore, the rapid detection of a biological entity is critical to tackle this issue and others like environment contamination and bioterrorism.Consequently, a multidisciplinary project between Sorbonne UniversitĂ© in Paris and RWTH University in Aachen has been conducted to create a completely integrated lab-on-a-chip (LOC) for easy, rapid and cost-effective immunoassays.The pathogen sensing system is composed of a microfluidic channel surrounded by planar PCB microcoils, which are responsible for the emission and the detection of magnetic fields. This system allows the detection of magnetic nanoparticles (MNP) used for immunoassays in a “sandwich” antigen-antibody configuration. Using microfluidics allows us to test very small volume samples quickly. We successfully tested this device with different concentrations of nanoparticles, different microfluidic channel layouts, different types of nanoparticles and different materials for the microfluidic channel. Using the frequency mixing magnetic detection technique, a LOD of 15 ng/”L for 20 nm core sized MNP has been achieved with a sample volume of 14 ”L corresponding to a drop of blood. Antibody coating was also achieved on a Poly(methyl methacrylate) (PMMA) surface which is a more suitable material than the classically used polydimethylsiloxane (PDMS) for our application. In this thesis, emphasis is put on the improvement of the device prototype and the surface functionalization of the microfluidic channel with antibodies

    Contributions to an electromagnetic and microfluidic microsystem for immunological detection using magnetic nanoparticles

    No full text
    The ever-increasing exchange of people and goods these last decades creates pandemic risks that should be prevented by containing the hazardous antigens in the region of the outbreak. Therefore, the rapid detection of a biological entity is critical to tackle this issue and others like environment contamination and bioterrorism.Consequently, a multidisciplinary project between Sorbonne UniversitĂ© in Paris and RWTH University in Aachen has been conducted to create a completely integrated lab-on-a-chip (LOC) for easy, rapid and cost-effective immunoassays.The pathogen sensing system is composed of a microfluidic channel surrounded by planar PCB microcoils, which are responsible for the emission and the detection of magnetic fields. This system allows the detection of magnetic nanoparticles (MNP) used for immunoassays in a “sandwich” antigen-antibody configuration. Using microfluidics allows us to test very small volume samples quickly. We successfully tested this device with different concentrations of nanoparticles, different microfluidic channel layouts, different types of nanoparticles and different materials for the microfluidic channel. Using the frequency mixing magnetic detection technique, a LOD of 15 ng/”L for 20 nm core sized MNP has been achieved with a sample volume of 14 ”L corresponding to a drop of blood. Antibody coating was also achieved on a Poly(methyl methacrylate) (PMMA) surface which is a more suitable material than the classically used polydimethylsiloxane (PDMS) for our application. In this thesis, emphasis is put on the improvement of the device prototype and the surface functionalization of the microfluidic channel with antibodies.L’augmentation continue de la circulation des populations et des biens ces derniĂšres dĂ©cennies accentue les risques de pandĂ©mie due Ă  un mauvais confinement des antigĂšnes dangereux Ă  leur rĂ©gion d’apparition. Il est donc crucial de dĂ©velopper une technique rapide de dĂ©tection de pathogĂšne pour prĂ©venir ces risques. Un projet multidisciplinaire a donc Ă©tait mis en place entre Sorbonne UniversitĂ© Ă  Paris et RWTH University Ă  JĂŒlich pour le dĂ©veloppement d’un dispositif laboratoire-sur-puce intĂ©grĂ© pour effectuer des tests immunologiques rapides, faciles et abordables. Ce dispositif de dĂ©tection de pathogĂšne est composĂ© d’un canal microfluidique entourĂ© de microbobines planaires en circuit imprimĂ© responsables de l’émission et de la dĂ©tection de champs magnĂ©tiques. Ainsi des nanoparticules magnĂ©tiques peuvent ĂȘtre dĂ©tectĂ©es et quantifiĂ©es puis ĂȘtre corrĂ©lĂ©es Ă  la prĂ©sence du pathogĂšne, en tant que marqueurs du test immunologique. Habituellement, l’étape de dĂ©tection de la prĂ©sence du pathogĂšne dans un Ă©chantillon se fait grĂące Ă  un signal fluorescent ou Ă©lectrochimique qui sont des techniques longues et avec une sensibilitĂ© limitĂ©e. En consĂ©quence, les tests immunologiques magnĂ©tiques semblent ĂȘtre une alternative intĂ©ressante. L’utilisation de canaux microfluidiques permet de n’utiliser qu’une trĂšs petite quantitĂ© d’échantillon pour effectuer un test. Pendant ce doctorat, l’objectif principal a Ă©tĂ© d’amĂ©liorer le prototype du dispositif et la fonctionnalisation de surface du canal microfluidique avec des anticorps

    A Platform for Stop-Flow Gradient Generation to Investigate Chemotaxis

    No full text
    The ability of artificial microswimmers to respond to external stimuli and the mechanistical details of their origins belong to the most disputed challenges in interdisciplinary science. Therein, the creation of chemical gradients is technically challenging, because they quickly level out due to diffusion. Inspired by pivotal stopped flow experiments in chemical kinetics, we show that microfluidics gradient generation combined with a pressure feedback loop for precisely controlling the stop of the flows, can enable us to study mechanistical details of chemotaxis of artificial Janus micromotors, based on a catalytic reaction. We find that these copper Janus particles display a chemotactic motion along the concentration gradient in both, positive and negative direction and we demonstrate the mechanical reaction of the particles to unbalanced drag forces, explaining this behaviour

    A platform for stop flow gradient generation to investigate chemotaxis

    No full text
    The ability of artificial microswimmers to respond to external stimuli and the mechanistical details of their origins belong to the most disputed challenges in interdisciplinary science. Therein, the creation of chemical gradients is technically challenging, because they quickly level out due to diffusion. Inspired by pivotal stopped flow experiments in chemical kinetics, we show that microfluidics gradient generation combined with a pressure feedback loop for precisely controlling the stop of the flows, can enable us to study mechanistical details of chemotaxis of artificial Janus micromotors, based on a catalytic reaction. We find that these copper Janus particles display a chemotactic motion along the concentration gradient in both, positive and negative direction and we demonstrate the mechanical reaction of the particles to small forces deviations, explaining this behaviour

    Entwicklung einer Plattform zur Generierung von Stop-Flow- Gradienten zur Untersuchung von Chemotaxis

    No full text
    Die FĂ€higkeit kĂŒnstlicher Mikroschwimmer, auf Ă€ußere Reize zu reagieren und deren mechanistische UrsprĂŒnge, gehören zu den umstrittensten Fragen der interdisziplinĂ€ren Wissenschaft. Die Erzeugung chemischer Gradienten ist dabei eine technische Herausforderung, da sie aufgrund von Diffusion schnell abflachen. Inspiriert von ‘Stop-flow’ Experimenten aus der chemischen Kinetik zeigen wir, dass die Erzeugung eines mikrofluidischen Gradienten durch Kombination mit einer DruckrĂŒckkopplungsschleife zur prĂ€zisen Kontrolle des Stoppens erfolgen kann. Das ermöglicht es uns, die mechanistischen Details der Chemotaxis von kĂŒnstlichen katalytischen Janus-Mikromotoren zu untersuchen. Wir stellen fest, dass diese Kupfer-Janus-Partikel eine chemotaktische Bewegung entlang des Konzentrationsgradienten sowohl in positiver als auch in negativer Richtung zeigen, und wir demonstrieren die mechanische Reaktion der Partikel auf unausgewogene WiderstandskrĂ€fte, die dieses Verhalten erklĂ€ren

    Magnetic Detection Structure for LOC Immunoassays, Multiphysics Simulations and Experimental Results

    No full text
    The aim of this work is to develop a completely integrated Lab-On-Chip (LOC) for easy, rapid and cost-effective immunoassays. The pathogen sensing system is composed of a microfluidic channel surrounded by planar microcoils which are responsible for the emission and the detection of magnetic fields. The system allows the detection and quantification of superparamagnetic beads used for immunoassays in a “sandwich” antigen-antibody configuration. Multiphysics simulations have been achieved and preliminary experimental results have allowed to validate the structure

    Magnetic Detection Structure for Lab-on-Chip Applications Based on the Frequency Mixing Technique

    No full text
    A magnetic frequency mixing technique with a set of miniaturized planar coils was investigated for use with a completely integrated Lab-on-Chip (LoC) pathogen sensing system. The system allows the detection and quantification of superparamagnetic beads. Additionally, in terms of magnetic nanoparticle characterization ability, the system can be used for immunoassays using the beads as markers. Analytical calculations and simulations for both excitation and pick-up coils are presented; the goal was to investigate the miniaturization of simple and cost-effective planar spiral coils. Following these calculations, a Printed Circuit Board (PCB) prototype was designed, manufactured, and tested for limit of detection, linear response, and validation of theoretical concepts. Using the magnetic frequency mixing technique, a limit of detection of 15 ”g/mL of 20 nm core-sized nanoparticles was achieved without any shielding
    corecore