213 research outputs found

    Design, fabrication, and characterization of a compact hierarchical manifold microchannel heat sink array for two-phase cooling

    Get PDF
    High-heat-flux removal is critical for the nextgeneration electronic devices to reliably operate within their temperature limits. A large portion of the thermal resistance in a traditional chip package is caused by thermal resistances at interfaces between the device, heat spreaders, and the heat sink; embedding the heat sink directly into the heat-generating device can eliminate these interface resistances and drastically reduce the overall thermal resistance. Microfluidic cooling within the embedded heat sink improves the heat dissipation, with two-phase operation offering the potential for dissipation of very high heat fluxes while maintaining moderate chip temperatures. To enable multichip stacking and other heterogeneous packaging approaches, it is important to densely integrate all fluid flow paths into the device; volumetric heat dissipation emerges as a performance metric in this new heat sinking paradigm. In this paper, a compact hierarchical manifold microchannel design is presented that utilizes an integrated multilevel manifold distributor to feed coolant to an array of microchannel heat sinks. The flow features in the manifold layers and microchannels are fabricated in silicon wafers using deep reactive-ion etching. The heat source is simulated via Joule heating using thin-film platinum heaters. The on-chip spatial temperature measurements are made using four-wire resistance temperature detectors. The individual manifold layers and the microchannel-bearing wafers are diced and bonded into a sealed stack via thermocompression bonding using gold layers at the mating surfaces. Thermal and hydrodynamic testing is performed by pumping the dielectric fluid HFE-7100 through the device at a known flow rate

    Characterization of Hierarchical Manifold Microchannel Heat Sink Arrays under Simultaneous Background and Hotspot Heating Conditions

    Get PDF
    A hierarchical manifold microchannel heat sink array is fabricated and experimentally characterized for uniform heat flux dissipation over a footprint area of 5 mm x 5 mm. A 3 x 3 array of heat sinks is fabricated into the silicon substrate containing the heaters for direct intrachip cooling, eliminating the thermal resistances typically associated with the attachment of a separate heat sink. The heat sinks are fed in parallel using a hierarchical manifold distributor that delivers flow to each of the heat sinks. Each heat sink contains a bank of high-aspect-ratio microchannels; five different channel geometries with nominal widths of 15 lm and 33 micrometers and nominal depths between 150 micrometers and 470 micrometers are tested. The thermal and hydraulic performance of each heat sink array geometry is evaluated using HFE-7100 as the working fluid, for mass fluxes ranging from 600 kg/m2 s to 2100 kg/m2 s at a constant inlet temperature of 59 degree C. To simulate heat generation from electronics devices, a uniform background heat flux is generated with thin-film serpentine heaters fabricated on the silicon substrate opposite the channels; temperature sensors placed across the substrate provide spatially resolved surface temperature measurements. Experiments are also conducted with simultaneous background and hotspot heat generation; the hotspot heat flux is produced by a discrete 200 micrometers x 200 micrometers hotspot heater. Heat fluxes up to 1020 W/cm2 are dissipated under uniform heating conditions at chip temperatures less than 69 degree C above the fluid inlet and at pressure drops less than 120 kPa. Heat sinks with wider channels yield higher wetted-area heat transfer coefficients, but not necessarily the lowest thermal resistance; for a fixed channel depth, samples with narrower channels have increased total wetted areas owing to the smaller fin pitches. During simultaneous background and hotspot heating conditions, background heat fluxes up to 900 W/cm2 and hotspot fluxes up to 2700 W/cm2 are dissipated. The hotspot temperature increases linearly with hotspot heat flux; at hotspot heat fluxes of 2700 W/cm2, the hotspot experiences a temperature rise of 16 degree C above the average chip temperature

    A Hierarchical Manifold Microchannel Heat Sink Array for High-Heat-Flux Two-Phase Cooling of Electronics

    Get PDF
    High-heat-flux removal is necessary for next-generation microelectronic systems to operate more reliably and efficiently. Extremely high heat removal rates are achieved in this work using a hierarchical manifold microchannel heat sink array. The microchannels are imbedded directly into the heated substrate to reduce the parasitic thermal resistances due to contact and conduction resistances. Discretizing the chip footprint area into multiple smaller heat sink elements with high-aspect-ratio microchannels ensures shortened effective fluid flow lengths. Phase change of high fluid mass fluxes can thus be accommodated in micron-scale channels while keeping pressure drops low compared to traditional, microchannel heat sinks. A thermal test vehicle, with all flow distribution components heterogeneously integrated, is fabricated to demonstrate this enhanced thermal and hydraulic performance. The 5 mm x 5 mm silicon chip area, with resistive heaters and local temperature sensors fabricated directly on the opposite face, is cooled by a 3 x 3 array of microchannel heat sinks that are fed with coolant using a hierarchical manifold distributor. Using the engineered dielectric liquid HFE-7100 as the working fluid, experimental results are presented for channel mass fluxes of 1300, 2100, and 2900 kg/m2 s and channel cross sections with nominal widths of 15 micrometers and nominal depths of 35 micrometers, 150 micrometers, and 300 micrometers. Maximum heat flux dissipation is shown to increase with mass flux and channel depth and the heat sink with 15 micrometers x 300 micrometers channels is shown to dissipate base heat fluxes up to 910 W/cm2 at pressure drops of less than 162 kPa and chip temperature rise under 47 degrees C relative to the fluid inlet temperature

    Measurement and Theory of Gas-Phase Ion Mobility Shifts Resulting from Isotopomer Mass Distribution Changes

    Full text link
    The unanticipated discovery of recent ultra-high-resolution ion mobility spectrometry (IMS) measurements revealing that isotopomers—compounds that differ only in the isotopic substitution sites—can be separated has raised questions as to the physical basis for their separation. A study comparing IMS separations for two isotopomer sets in conjunction with theory and simulations accounting for ion rotational effects provides the first-ever prediction of rotation-mediated shifts. The simulations produce observable mobility shifts due to differences in gas−ion collision frequency and translational-to-rotational energy transfer. These differences can be attributed to distinct changes in the moment of inertia and center of mass between isotopomers. The simulations are in broad agreement with the observed experiments and consistent with relative mobility differences between isotopomers. These results provide a basis for refining IMS theory and a new foundation to obtain additional structural insights through IMS

    Life-threatening Skin Disorders Treated in the Burn Center: Impact of Health care–associated Infections on Length of Stay, Survival, and Hospital Charges

    Get PDF
    This article reviews a single burn center experience with life-threatening skin disorders, over a 10-year period. It explores the incidence of health care–associated infections and the impact on length of stay, hospital charges, and mortality

    Factors Governing Pasting Properties of Waxy Wheat Flours

    Get PDF
    Citation: Purna, S. K. G., Shi, Y. C., Guan, L., Wilson, J. D., & Graybosch, R. A. (2015). Factors Governing Pasting Properties of Waxy Wheat Flours. Cereal Chemistry, 92(5), 529-535. doi:10.1094/cchem-10-14-0209-rWaxy wheat (Triticum aestivum L.) contains endosperm starch lacking in amylose. To realize the full potential of waxy wheat, the pasting properties of hard waxy wheat flours as well as factors governing the pasting properties were investigated and compared with normal and partial waxy wheat flours. Starches isolated from six hard waxy wheat flours had similar pasting properties, yet their corresponding flours had very different pasting properties. The differences in pasting properties were narrowed after endogenous alpha-amylase activity in waxy wheat flours was inhibited by silver nitrate. Upon treatment with protease, the extent of protein digestibility influenced the viscosity profile in waxy wheat flours. Waxy wheat starch granules swelled extensively when heated in water and exhibited a high peak viscosity, but they fragmented at high temperatures, resulting in more rapid breakdown in viscosity. The extensively swelled and fragmented waxy wheat starch granules were more susceptible to a-amylase degradation than normal wheat starch. A combination of endogenous a-amylase activity and protein matrix contributed to a large variation in pasting properties of waxy wheat flours

    Usefulness of an accelerated transoesophageal stress echocardiography in the preoperative evaluation of high risk severely obese subjects awaiting bariatric surgery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Severe obesity is associated with an increased risk of coronary artery disease (CAD). Bariatric surgery is an effective procedure for long term weight management as well as reduction of comorbidities. Preoperative evaluation of cardiac operative risk may often be necessary but unfortunately standard imaging techniques are often suboptimal in these subjects. The purpose of this study was to demonstrate the feasibility, safety and utility of transesophageal dobutamine stress echocardiography (TE-DSE) using an adapted accelerated dobutamine infusion protocol in severely obese subjects with comorbidities being evaluated for bariatric surgery for assessing the presence of myocardial ischemia.</p> <p>Methods</p> <p>Subjects with severe obesity [body mass index (BMI) >40 kg/m<sup>2</sup>] with known or suspected CAD and being evaluated for bariatric surgery were recruited.</p> <p>Results</p> <p>Twenty subjects (9M/11F), aged 50 ± 8 years (mean ± SD), weighing 141 ± 21 kg and with a BMI of 50 ± 5 kg/m<sup>2 </sup>were enrolled in the study and underwent a TE-DSE. The accelerated dobutamine infusion protocol used was well tolerated. Eighteen (90%) subjects reached their target heart rate with a mean intubation time of 13 ± 4 minutes. Mean dobutamine dose was 31.5 ± 9.9 ug/kg/min while mean atropine dose was 0.5 ± 0.3 mg. TE-DSE was well tolerated by all subjects without complications including no significant arrhythmia, hypotension or reduction in blood arterial saturation. Two subjects had abnormal TE-DSE suggestive of myocardial ischemia. All patients underwent bariatric surgery with no documented cardiovascular complications.</p> <p>Conclusions</p> <p>TE-DSE using an accelerated infusion protocol is a safe and well tolerated imaging technique for the evaluation of suspected myocardial ischemia and cardiac operative risk in severely obese patients awaiting bariatric surgery. Moreover, the absence of myocardial ischemia on TE-DSE correlates well with a low operative risk of cardiac event.</p

    The SPectrometer for Ice Nuclei (SPIN): an instrument to investigate ice nucleation

    Get PDF
    The SPectrometer for Ice Nuclei (SPIN) is a commercially available ice nucleating particle (INP) counter manufactured by Droplet Measurement Technologies in Boulder, CO. The SPIN is a continuous flow diffusion chamber with parallel plate geometry based on the Zurich Ice Nucleation Chamber and the Portable Ice Nucleation Chamber. This study presents a standard description for using the SPIN instrument and also highlights methods to analyze measurements in more advanced ways. It characterizes and describes the behavior of the SPIN chamber, reports data from laboratory measurements, and quantifies uncertainties associated with the measurements. Experiments with ammonium sulfate are used to investigate homogeneous freezing of deliquesced haze droplets and droplet breakthrough. Experiments with kaolinite, NX illite, and silver iodide are used to investigate heterogeneous ice nucleation. SPIN nucleation results are compared to those from the literature. A machine learning approach for analyzing depolarization data from the SPIN optical particle counter is also presented (as an advanced use). Overall, we report that the SPIN is able to reproduce previous INP counter measurements

    Lumazine Synthase Protein Nanoparticle-Gd(III)-DOTA Conjugate as a T1 contrast agent for high-field MRI

    Get PDF
    With the applications of magnetic resonance imaging (MRI) at higher magnetic fields increasing, there is demand for MRI contrast agents with improved relaxivity at higher magnetic fields. Macromolecule-based contrast agents, such as protein-based ones, are known to yield significantly higher r(1) relaxivity at low fields, but tend to lose this merit when used as T-1 contrast agents (r(1)/r(2) = 0.5 similar to 1), with their r(1) decreasing and r(2) increasing as magnetic field strength increases. Here, we developed and characterized an in vivo applicable magnetic resonance (MR) positive contrast agent by conjugating Gd(III)-chelating agent complexes to lumazine synthase isolated from Aquifex aeolicus (AaLS). The r(1) relaxivity of Gd(III)-DOTA-AaLS-R108C was 16.49 mM(-1)s(-1) and its r(1)/r(2) ratio was 0.52 at the magnetic field strength of 7 T. The results of 3D MR angiography demonstrated the feasibility of vasculature imaging within 2 h of intravenous injection of the agent and a significant reduction in T-1 values were observed in the tumor region 7 h post-injection in the SCC-7 flank tumor model. Our findings suggest that Gd(III)-DOTA-AaLS-R108C could serve as a potential theranostic nanoplatform at high magnetic field strength.open0

    Graphene -- Based Nanocomposites as Highly Efficient Thermal Interface Materials

    Full text link
    We found that an optimized mixture of graphene and multilayer graphene - produced by the high-yield inexpensive liquid-phase-exfoliation technique - can lead to an extremely strong enhancement of the cross-plane thermal conductivity K of the composite. The "laser flash" measurements revealed a record-high enhancement of K by 2300 % in the graphene-based polymer at the filler loading fraction f =10 vol. %. It was determined that a relatively high concentration of single-layer and bilayer graphene flakes (~10-15%) present simultaneously with thicker multilayers of large lateral size (~ 1 micrometer) were essential for the observed unusual K enhancement. The thermal conductivity of a commercial thermal grease was increased from an initial value of ~5.8 W/mK to K=14 W/mK at the small loading f=2%, which preserved all mechanical properties of the hybrid. Our modeling results suggest that graphene - multilayer graphene nanocomposite used as the thermal interface material outperforms those with carbon nanotubes or metal nanoparticles owing to graphene's aspect ratio and lower Kapitza resistance at the graphene - matrix interface.Comment: 4 figure
    • 

    corecore