206 research outputs found

    Morphology of small-scale submarine mass movement events across the northwest United Kingdom

    Get PDF
    A review of multibeam echo sounder (MBES) survey data from five locations around the United Kingdom northwest coast has led to the identification of a total of 14 separate subaqueous mass movement scars and deposits within the fjords (sea lochs) and coastal inlets of mainland Scotland, and the channels between the islands of the Inner Hebrides. In these areas, Quaternary sediment deposition was dominated by glacial and glaciomarine processes. Analysis of the morphometric parameters of each submarine mass movement has revealed that they fall into four distinct groups of subaqueous landslides; Singular Slumps, Singular Translational, Multiple Single-Type, and Complex (translational & rotational) failures. The Singular Slump Group includes discrete, individual subaqueous slumps that exhibit no evidence of modification through the merging of several scars. The Singular Translational Group comprise a single slide that displays characteristics associated with a single translational (planar) failure with no merging of multiple events. The Multiple Single-Type Group incorporates scars and deposits that displayed morphometric features consistent with the amalgamation of several failure events of the same type (e.g. debris flows or slumps). Finally, the Complex (translational & rotational) Group comprises landslides that exhibited complex styles of failures, including both translational and rotational mechanisms controlling the same slide. The submarine mass movements that comprise this dataset are then discussed in relation to global fjordic and glaciomarine nearshore settings, and slope failure trigger mechanisms associated with these environments are described with tentative links to individual submarine landslides from the database, where appropriate. It is acknowledged that additional MBES data are needed not only to expand this database, but also in order to create a more statistically robust study. However, this initial study provides the basis for a much wider investigation of subaqueous mass movements and correlations between their morphometric parameters

    Interference of the T cell and antigen-presenting cell costimulatory pathway using CTLA4-Ig (abatacept) prevents Staphylococcal enterotoxin B pathology

    Get PDF
    Abstract Staphylococcal enterotoxin B (SEB) is a bacterial superantigen that binds the receptors in the APC/T cell synapse and causes increased proliferation of T cells and a cytokine storm syndrome in vivo. Exposure to the toxin can be lethal and cause significant pathology in humans. The lack of effective therapies for SEB exposure remains an area of concern, particularly in scenarios of acute mass casualties. We hypothesized that blockade of the T cell costimulatory signal by the CTLA4-Ig synthetic protein (abatacept) could prevent SEB-dependent pathology. In this article, we demonstrate mice treated with a single dose of abatacept 8 h post SEB exposure had reduced pathology compared with control SEB-exposed mice. SEB-exposed mice showed significant reductions in body weight between days 4 and 9, whereas mice exposed to SEB and also treated with abatacept showed no weight loss for the duration of the study, suggesting therapeutic mitigation of SEB-induced morbidity. Histopathology and magnetic resonance imaging demonstrated that SEB mediated lung damage and edema, which were absent after treatment with abatacept. Analysis of plasma and lung tissues from SEB-exposed mice treated with abatacept demonstrated significantly lower levels of IL-6 and IFN-Îł (p &amp;lt; 0.0001), which is likely to have resulted in less pathology. In addition, exposure of human and mouse PBMCs to SEB in vitro showed a significant reduction in levels of IL-2 (p &amp;lt; 0.0001) after treatment with abatacept, indicating that T cell proliferation is the main target for intervention. Our findings demonstrate that abatacept is a robust and potentially credible drug to prevent toxic effects from SEB exposure.</jats:p

    The APOEΔ3/Δ4 Genotype Drives Distinct Gene Signatures in the Cortex of Young Mice

    Get PDF
    Introduction: Restrictions on existing APOE mouse models have impacted research toward understanding the strongest genetic risk factor contributing to Alzheimer\u27s disease (AD) and dementia, APOEΔ4 , by hindering observation of a key, common genotype in humans - APOEΔ3/Δ4 . Human studies are typically underpowered to address APOEΔ4 allele risk as the APOEΔ4/Δ4 genotype is rare, which leaves human and mouse research unsupported to evaluate the APOEΔ3/Δ4 genotype on molecular and pathological risk for AD and dementia. Methods: As a part of MODEL-AD, we created and validated new versions of humanized APOEΔ3/Δ3 and APOEΔ4/Δ4 mouse strains that, due to unrestricted breeding, allow for the evaluation of the APOEΔ3/Δ4 genotype. As biometric measures are often translatable between mouse and human, we profiled circulating lipid concentrations. We also performed transcriptional profiling of the cerebral cortex at 2 and 4 months (mos), comparing APOEΔ3/Δ4 and APOEΔ4/Δ4 to the reference APOEΔ3/Δ3 using linear modeling and WGCNA. Further, APOE mice were exercised and compared to litter-matched sedentary controls, to evaluate the interaction between APOEΔ4 and exercise at a young age. Results: Expression of human APOE isoforms were confirmed in APOEΔ3/Δ3, APOEΔ3/Δ4 and APOEΔ4/Δ4 mouse brains. At two mos, cholesterol composition was influenced by sex, but not APOE genotype. Results show that the APOEΔ3/Δ4 and APOEΔ4/Δ4 genotype exert differential effects on cortical gene expression. APOEΔ3/Δ4 uniquely impacts \u27hormone regulation\u27 and \u27insulin signaling,\u27 terms absent in APOEΔ4/Δ4 data. At four mos, cholesterol and triglyceride levels were affected by sex and activity, with only triglyceride levels influenced by APOE genotype. Linear modeling revealed APOEΔ3/Δ4 , but not APOEΔ4/Δ4 , affected \u27extracellular matrix\u27 and \u27blood coagulation\u27 related terms. We confirmed these results using WGCNA, indicating robust, yet subtle, transcriptional patterns. While there was little evidence of APOE genotype by exercise interaction on the cortical transcriptome at this young age, running was predicted to affect myelination and gliogenesis, independent of APOE genotype with few APOE genotype-specific affects identified. Discussion: APOEΔ4 allele dosage-specific effects were observed in circulating lipid levels and cortical transcriptional profiles. Future studies are needed to establish how these data may contribute to therapeutic development in APOEΔ3/Δ4 and APOEΔ4/Δ4 dementia patients

    Natural genetic variation determines microglia heterogeneity in wild-derived mouse models of Alzheimer\u27s disease.

    Get PDF
    Genetic and genome-wide association studies suggest a central role for microglia in Alzheimer\u27s disease (AD). However, single-cell RNA sequencing (scRNA-seq) of microglia in mice, a key preclinical model, has shown mixed results regarding translatability to human studies. To address this, scRNA-seq of microglia from C57BL/6J (B6) and wild-derived strains (WSB/EiJ, CAST/EiJ, and PWK/PhJ) with and without APP/PS1 demonstrates that genetic diversity significantly alters features and dynamics of microglia in baseline neuroimmune functions and in response to amyloidosis. Results show significant variation in the abundance of microglial subtypes or states, including numbers of previously identified disease-associated and interferon-responding microglia, across the strains. For each subtype, significant differences in the expression of many genes are observed in wild-derived strains relative to B6, including 19 genes previously associated with human AD including Apoe, Trem2, and Sorl1. This resource is critical in the development of appropriately targeted therapeutics for AD and other neurological diseases

    Extensive DNA mimicry by the ArdA anti-restriction protein and its role in the spread of antibiotic resistance

    Get PDF
    The ardA gene, found in many prokaryotes including important pathogenic species, allows associated mobile genetic elements to evade the ubiquitous Type I DNA restriction systems and thereby assist the spread of resistance genes in bacterial populations. As such, ardA contributes to a major healthcare problem. We have solved the structure of the ArdA protein from the conjugative transposon Tn916 and find that it has a novel extremely elongated curved cylindrical structure with defined helical grooves. The high density of aspartate and glutamate residues on the surface follow a helical pattern and the whole protein mimics a 42-base pair stretch of B-form DNA making ArdA by far the largest DNA mimic known. Each monomer of this dimeric structure comprises three alpha–beta domains, each with a different fold. These domains have the same fold as previously determined proteins possessing entirely different functions. This DNA mimicry explains how ArdA can bind and inhibit the Type I restriction enzymes and we demonstrate that 6 different ardA from pathogenic bacteria can function in Escherichia coli hosting a range of different Type I restriction systems

    Exploring the impact of selection bias in observational studies of COVID-19: a simulation study

    Get PDF
    BACKGROUND: Non-random selection of analytic subsamples could introduce selection bias in observational studies. We explored the potential presence and impact of selection in studies of SARS-CoV-2 infection and COVID-19 prognosis. METHODS: We tested the association of a broad range of characteristics with selection into COVID-19 analytic subsamples in the Avon Longitudinal Study of Parents and Children (ALSPAC) and UK Biobank (UKB). We then conducted empirical analyses and simulations to explore the potential presence, direction and magnitude of bias due to this selection (relative to our defined UK-based adult target populations) when estimating the association of body mass index (BMI) with SARS-CoV-2 infection and death-with-COVID-19. RESULTS: In both cohorts, a broad range of characteristics was related to selection, sometimes in opposite directions (e.g. more-educated people were more likely to have data on SARS-CoV-2 infection in ALSPAC, but less likely in UKB). Higher BMI was associated with higher odds of SARS-CoV-2 infection and death-with-COVID-19. We found non-negligible bias in many simulated scenarios. CONCLUSIONS: Analyses using COVID-19 self-reported or national registry data may be biased due to selection. The magnitude and direction of this bias depend on the outcome definition, the true effect of the risk factor and the assumed selection mechanism; these are likely to differ between studies with different target populations. Bias due to sample selection is a key concern in COVID-19 research based on national registry data, especially as countries end free mass testing. The framework we have used can be applied by other researchers assessing the extent to which their results may be biased for their research question of interest

    Enhancing face validity of mouse models of Alzheimer\u27s disease with natural genetic variation.

    Get PDF
    Classical laboratory strains show limited genetic diversity and do not harness natural genetic variation. Mouse models relevant to Alzheimer\u27s disease (AD) have largely been developed using these classical laboratory strains, such as C57BL/6J (B6), and this has likely contributed to the failure of translation of findings from mice to the clinic. Therefore, here we test the potential for natural genetic variation to enhance the translatability of AD mouse models. Two widely used AD-relevant transgenes, APPswe and PS1de9 (APP/PS1), were backcrossed from B6 to three wild-derived strains CAST/EiJ, WSB/EiJ, PWK/PhJ, representative of three Mus musculus subspecies. These new AD strains were characterized using metabolic, functional, neuropathological and transcriptional assays. Strain-, sex- and genotype-specific differences were observed in cognitive ability, neurodegeneration, plaque load, cerebrovascular health and cerebral amyloid angiopathy. Analyses of brain transcriptional data showed strain was the greatest driver of variation. We identified significant variation in myeloid cell numbers in wild type mice of different strains as well as significant differences in plaque-associated myeloid responses in APP/PS1 mice between the strains. Collectively, these data support the use of wild-derived strains to better model the complexity of human AD

    Altering the availability or proximity of food, alcohol, and tobacco products to change their selection and consumption.

    Get PDF
    BACKGROUND: Overconsumption of food, alcohol, and tobacco products increases the risk of non-communicable diseases. Interventions to change characteristics of physical micro-environments where people may select or consume these products - including shops, restaurants, workplaces, and schools - are of considerable public health policy and research interest. This review addresses two types of intervention within such environments: altering the availability (the range and/or amount of options) of these products, or their proximity (the distance at which they are positioned) to potential consumers. OBJECTIVES: 1. To assess the impact on selection and consumption of altering the availability or proximity of (a) food (including non-alcoholic beverages), (b) alcohol, and (c) tobacco products.2. To assess the extent to which the impact of these interventions is modified by characteristics of: i. studies, ii. interventions, and iii. SEARCH METHODS: We searched CENTRAL, MEDLINE, Embase, PsycINFO, and seven other published or grey literature databases, as well as trial registries and key websites, up to 23 July 2018, followed by citation searches. SELECTION CRITERIA: We included randomised controlled trials with between-participants (parallel group) or within-participants (cross-over) designs. Eligible studies compared effects of exposure to at least two different levels of availability of a product or its proximity, and included a measure of selection or consumption of the manipulated product. DATA COLLECTION AND ANALYSIS: We used a novel semi-automated screening workflow and applied standard Cochrane methods to select eligible studies, collect data, and assess risk of bias. In separate analyses for availability interventions and proximity interventions, we combined results using random-effects meta-analysis and meta-regression models to estimate summary effect sizes (as standardised mean differences (SMDs)) and to investigate associations between summary effect sizes and selected study, intervention, or participant characteristics. We rated the certainty of evidence for each outcome using GRADE. MAIN RESULTS: We included 24 studies, with the majority (20/24) giving concerns about risk of bias. All of the included studies investigated food products; none investigated alcohol or tobacco. The majority were conducted in laboratory settings (14/24), with adult participants (17/24), and used between-participants designs (19/24). All studies were conducted in high-income countries, predominantly in the USA (14/24).Six studies investigated availability interventions, of which two changed the absolute number of different options available, and four altered the relative proportion of less-healthy (to healthier) options. Most studies (4/6) manipulated snack foods or drinks. For selection outcomes, meta-analysis of three comparisons from three studies (n = 154) found that exposure to fewer options resulted in a large reduction in selection of the targeted food(s): SMD -1.13 (95% confidence interval (CI) -1.90 to -0.37) (low certainty evidence). For consumption outcomes, meta-analysis of three comparisons from two studies (n = 150) found that exposure to fewer options resulted in a moderate reduction in consumption of those foods, but with considerable uncertainty: SMD -0.55 (95% CI -1.27 to 0.18) (low certainty evidence).Eighteen studies investigated proximity interventions. Most (14/18) changed the distance at which a snack food or drink was placed from the participants, whilst four studies changed the order of meal components encountered along a line. For selection outcomes, only one study with one comparison (n = 41) was identified, which found that food placed farther away resulted in a moderate reduction in its selection: SMD -0.65 (95% CI -1.29 to -0.01) (very low certainty evidence). For consumption outcomes, meta-analysis of 15 comparisons from 12 studies (n = 1098) found that exposure to food placed farther away resulted in a moderate reduction in its consumption: SMD -0.60 (95% CI -0.84 to -0.36) (low certainty evidence). Meta-regression analyses indicated that this effect was greater: the farther away the product was placed; when only the targeted product(s) was available; when participants were of low deprivation status; and when the study was at high risk of bias. AUTHORS' CONCLUSIONS: The current evidence suggests that changing the number of available food options or altering the positioning of foods could contribute to meaningful changes in behaviour, justifying policy actions to promote such changes within food environments. However, the certainty of this evidence as assessed by GRADE is low or very low. To enable more certain and generalisable conclusions about these potentially important effects, further research is warranted in real-world settings, intervening across a wider range of foods - as well as alcohol and tobacco products - and over sustained time periods

    A novel systems biology approach to evaluate mouse models of late-onset Alzheimer\u27s disease.

    Get PDF
    BACKGROUND: Late-onset Alzheimer\u27s disease (LOAD) is the most common form of dementia worldwide. To date, animal models of Alzheimer\u27s have focused on rare familial mutations, due to a lack of frank neuropathology from models based on common disease genes. Recent multi-cohort studies of postmortem human brain transcriptomes have identified a set of 30 gene co-expression modules associated with LOAD, providing a molecular catalog of relevant endophenotypes. RESULTS: This resource enables precise gene-based alignment between new animal models and human molecular signatures of disease. Here, we describe a new resource to efficiently screen mouse models for LOAD relevance. A new NanoString nCounterÂź Mouse AD panel was designed to correlate key human disease processes and pathways with mRNA from mouse brains. Analysis of the 5xFAD mouse, a widely used amyloid pathology model, and three mouse models based on LOAD genetics carrying APOE4 and TREM2*R47H alleles demonstrated overlaps with distinct human AD modules that, in turn, were functionally enriched in key disease-associated pathways. Comprehensive comparison with full transcriptome data from same-sample RNA-Seq showed strong correlation between gene expression changes independent of experimental platform. CONCLUSIONS: Taken together, we show that the nCounter Mouse AD panel offers a rapid, cost-effective and highly reproducible approach to assess disease relevance of potential LOAD mouse models
    • 

    corecore