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In Brief

Neuroinflammation is a key component of
Alzheimer’s disease. Yang et al. perform
single-cell sequencing of microglia in
wild-derived mouse strains that carry
amyloid and show that these strains differ
from the commonly used strains,
exhibiting significant variation in
abundance of microglial subtypes,
including numbers of disease-associated
and interferon-responding microglia.
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SUMMARY

Genetic and genome-wide association studies suggest a central role for microglia in Alzheimer’s disease
(AD). However, single-cell RNA sequencing (scRNA-seq) of microglia in mice, a key preclinical model, has
shown mixed results regarding translatability to human studies. To address this, scRNA-seq of microglia
from C57BL/6J (B6) and wild-derived strains (WSB/EiJ, CAST/EiJ, and PWK/PhJ) with and without APP/
PS1 demonstrates that genetic diversity significantly alters features and dynamics of microglia in baseline
neuroimmune functions and in response to amyloidosis. Results show significant variation in the abundance
of microglial subtypes or states, including numbers of previously identified disease-associated and inter-
feron-responding microglia, across the strains. For each subtype, significant differences in the expression
of many genes are observed in wild-derived strains relative to B6, including 19 genes previously associated
with human AD including Apoe, Trem2, and Sorl1. This resource is critical in the development of appropriately

targeted therapeutics for AD and other neurological diseases.

INTRODUCTION

Alzheimer’s disease (AD) is defined by the neuropathological
accumulation of beta amyloid plaques, neurofibrillary tangles
of tau, and widespread neuronal loss. AD is the most common
cause of adult dementia and is characterized by a wide range
of cognitive and behavioral deficits that severely impact quality
of life and the ability to self-care. Recent work has re-focused
the field on the contribution of brain glial cells to the initiation
and spread of these disease-specific pathologies, specifically
on the potential role of microglia as a causative cell type in driving
disease development and progression. Human genome-wide
association studies (GWASSs) have identified more than 25 vari-
ants in or near genes uniquely expressed in microglia that are
predicted to increase susceptibility for AD. In light of this
complexity, the mouse represents a critical model system to
dissect the role of microglia and other glia in AD.

There has been much debate regarding the alignment of
mouse microglia to human microglia in terms of identity, diver-
sity, and function. With the more widespread use of single-cell
sequencing technology, a number of groups have suggested
that the species difference is too great for conclusions drawn
from mouse models to inform our understanding of human mi-
croglia (Friedman et al., 2018; Geirsdottir et al., 2019). Central
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to this argument is the discovery and description of a specific
class of microglia in the mouse, disease-associated microglia
(DAM) (Keren-Shaul et al., 2017). Based upon the current data,
it is unclear whether the presence or absence of DAM in human
AD patients is the result of differences in tissue collection,
extraction of cells, genetic diversity of patients, subtypes of AD
presented in donors, or even comorbidities (Friedman et al.,
2018; Alsema et al., 2020). Recent work has demonstrated that
single-nucleus RNA sequencing (RNA-seq) of stored human tis-
sue fails to detect differences in microglia activation between AD
and controls (Thrupp et al., 2020), further complicating direct
comparisons between humans and mouse models.

The vast majority of mouse microglia gene datasets have been
generated using the inbred laboratory strain, C57BL/6 (B6). Ge-
netic complexity in the human population is expected to influ-
ence differences in, and the even presence of, microglia sub-
types. However, inclusion of similar genetic diversity in mouse
strains has not been explored. We have taken advantage of
wild-derived mouse strains that exhibit natural genetic variation
in AD risk genes (Onos et al., 2019). As the wild-derived strains
CAST/EiJ (CAST), WSB/EiJ (WSB), and PWK/PhJ (PWK) were
captured from the wild from different geographical regions for
laboratory use, their genomes are closer to recapitulating the di-
versity of genetic variants that would exist in the natural world.
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We have already demonstrated that these strains show variation
in their baseline number of myeloid cells, with B6 and PWK
showing twice the number of IBA1+ cells in a region of the hippo-
campus and cortex in comparison to CAST and WSB. Similar
variation has recently been observed in B6 compared to WSB
mice in the hypothalamus (Terrien et al., 2019). Therefore, it is
plausible that differences in both adaptive and innate immunity
may confer resilience or susceptibility to neurodegenerative dis-
eases. The inclusion of human mutations associated with amy-
loid pathology, APP**¢ and PS19°° (APP/PS1), highlighted these
strain-specific differences in neuroinflammatory responsiveness
(Onos et al., 2019). For example, CAST.APP/PS1 demonstrated
a hyperproliferative phenotype with the highest density of micro-
glia around plaques and WSB.APP/PS1 showed the fewest pla-
que-associated microglia. In further support of differences in
amyloid-induced microglial responses, weighted gene co-
expression network analysis (WGCNA) of bulk RNA-seq data
from brain hemispheres identified a microglia gene-enriched
module that varied across the strains. PWK.APP/PS1 showed
the highest eigenvalues, whereas WSB.APP/PS1 showed the
lowest. These variations in both microglial phenotypes and sus-
ceptibility to neuronal cell loss suggest our wild-derived AD
panel provides a unique opportunity to understand the role of mi-
croglia biology on neurodegeneration. To aid in these efforts, we
have now developed a single myeloid cell data resource from
wild-derived mouse strains that supports the importance of
including natural genetic variation to dissect the roles of micro-
glia model microglial biology in AD.

RESULTS

Natural genetic variation shapes the transcriptome
landscape of brain myeloid cells

In order to understand microglia diversity present in wild-derived
strains compared to B6, we performed single-cell RNA-seq
(scRNA-seq) on brain myeloid cells isolated from female
9-month-old B6.APP/PS1, CAST.APP/PS1, PWK.APP/PST,
and WSB.APP/PS1 and wild-type (WT) controls. We prioritized
female mice as they showed the most variation in AD-relevant
phenotypes at this age compared to males. Recent work has
also suggested that sex-specific microglia differences are pri-
marily in threshold to activation, with microglia progressing
more quickly in females compared tomales (Sala Frigerio et al.,
2019). Briefly, we performed mechanical dissociation (Bohlen
et al., 2019) on brains to obtain a single-cell suspension for
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myeloid cell enrichment using magnetic-activated cell sorting
(MACS) with CD11b microbeads. All steps were performed on
ice or at 4°C to minimize tissue dissociation-related microglia
activation (Wu et al., 2017). Single myeloid cell RNA libraries
were generated using 10x Genomics v3 chemistry and
sequenced by lllumina Nova-seq S2 sequencer (see method de-
tails). Fastq files were aligned to customized strain-specific ge-
nomes using scBASE pipeline (Choi et al., 2019), and gene
counts were estimated by emaze-zero software (Raghupathy
et al., 2018) (Figure 1A). Gene count matrix and downstream
clustering analysis was processed using the Seurat package af-
ter removing low-quality cells and contaminating non-myeloid
cells (Figures S1A and S1B). Overall, 91,201 myeloid cells were
integrated across the strains (Figure S1C), with 87,746 identified
as microglia (Figure S1D). No significant differences in yield of
myeloid cells or microglia between the strains were observed
(Figures S1C and S1D), despite differences in ltgam (Cd11b)
gene expression determined from our previous bulk RNA-seq
study (Onos et al., 2019) (Figure S1E) and from this study (Fig-
ure S1F). Gene expression profiles were integrated using canon-
ical correlation analysis (CCA) (Stuart and Satija, 2019), and
myeloid cells from each strain were clustered together, allowing
for direct comparison of cell types between strains (Figures
S2A-S2C). A total of four major myeloid cell clusters were
defined —microglia (96.2%), perivascular macrophages (1.5%),
monocytes (1.5%), and neutrophils (0.8%)—based upon
commonly used marker genes (Keren-Shaul et al., 2017; Yang
et al., 2019) including Tmem119, Itgam, P2ry12, Clqa, Ptprc,
Mrc1, Cd74, Itgal, S100a4, and S100a9 (Figures S2D-S2F).

Defining microglia subtypes in genetically diverse
mouse strains

Given microglia were the most common myeloid cell identified, a
second round of clustering was performed to more accurately
define microglia subtypes or states. Thirteen microglia clusters
were annotated based on relative expression levels of marker
genes such as Tmem119, Cx3cr1, Cst7, Clec7a, Apoe, Ifitm3,
Hexb, C3ar1, and Stmn1 (Figures 1B-1D; Table S1). Cluster
number was assigned and ordered based on overall cell abun-
dance. Gene expression for our clusters was then compared
with microglia subtypes from previous scRNA-seq studies
(Keren-Shaul et al., 2017; Hammond et al., 2019; Sala Frigerio
et al.,, 2019) (Figure 1E) by evaluating enrichment scores of
marker genes from reported microglia subtype in our clusters.
In our dataset, clusters 0-5 were the most abundant and were

Figure 1. Clustering and annotation of microglia subtypes in B6 and wild-derived mice

(A) Overview of the experimental strategy.

(B) UMAP plot showed 87,746 strain-integrated microglia from all 29 mice (20,732 from B6, 24,124 from CAST, 19,702 from PWK, and 23,188 from WSB), re-
flecting diverse microglia subtypes including homeostatic (clusters 0-5), disease-associated (clusters 6 and 12), interferon-responding (cluster 7),
Hexb"9"/Cd81"sh (cluster 8), ribosomal gene-enriched (cluster 9), Ccl3"9"/Ccl4™9" (cluster 10), and proliferative microglia (cluster 11).

(C) Dot plot showing the classical marker genes for microglia subtypes with their percentage expressed (dot size) and average expression (color intensity).
(D) UMAP plots highlighting microglia subtype marker genes including Hexb, Cst7, Ifitm3, Rplp1, Ccl4, and Stmn1.

(E) Violin boxplots showing the enrichment Z score for each cluster (all strains combined) based on marker genes from previously identified microglia subtypes.
Microglia subtypes from previous studies for comparison include homeostatic microglia (Keren-Shaul et al., 2017; Sala Frigerio et al., 2019; Hammond et al.,
2019; Gosselin et al., 2017; Butovsky and Weiner, 2018), disease- associated microglia (DAM) (Keren-Shaul et al., 2017), activated-response microglia (ARM)
(Sala Frigerio et al., 2019), interferon-responding microglia (IRM) (Sala Frigerio et al., 2019), aging-associated microglia (OA2, OA3) (Hammond et al., 2019), and
cycling and proliferative microglia (CPM) (Sala Frigerio et al., 2019). Significant variation in enrichment score was detected across the clusters (p <2 x 1076, one-
way ANOVA), which supported identification of clusters 6 and 12 as DAM/ARM and cluster 7 as IRM.
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pooled (Figures S3A and S3B), collectively referred to as cluster
H or homeostatic microglia. These clusters appeared consistent
with “homeostatic”-like microglia, exhibiting positive overlap
with 23 previously identified homeostatic marker genes (Keren-
Shaul et al., 2017; Hammond et al., 2019; Sala Frigerio et al.,
2019; Gosselin et al., 2017; Butovsky and Weiner, 2018) (Fig-
ure 1E). One additional cluster (cluster 8) showed similarities to
cluster H, but many of the marker genes were expressed at a
significantly higher level, including Hexb, Cd81, Tmem119, and
Cst3 (Figures 1B-1E). To our knowledge, this Hexb™9"/Cdg1Mo"
cluster has not been previously identified. Clusters 6 and 12 were
identified as DAM based on high expression of Cst7, Lpl, and
Clec7a and low expression of Cx3cr1 (Figures 1B-1D) and
were more similar to previously identified DAM (Keren-Shaul
et al., 2017) and activated response microglia (ARM) (Sala Fri-
gerio et al., 2019) than any other clusters (Figure 1E). In compar-
ison to cluster 6, cluster 12 showed lower expression of homeo-
static marker genes such as Cx3Cr1, Csf1r, Tgfbr1, and Tgfbr2,
as well as higher expression of Tyrobp, Cst7, and ribosomal
genes (Figure S3C). The high ribosomal gene signature suggests
enhanced translational activity in cluster 12 (p adj < 10~'®; Fig-
ure S3D). Cluster 9 also showed high expression of ribosomal
genes and was in close proximity to cluster 12 in the Uniform
Manifold Approximation and Projection (UMAP) plot (Figures
1B, 1C, and S3D) but did not show characteristic features of
DAM. Cluster 7 was identified as interferon-responding microglia
(IRM) based on marker genes that included /fit3, Ifitm3, and Irf7
(Figures 1B-1E) and was the cluster that showed the greatest
similarity to the previously reported IRM (Sala Frigerio et al.,
2019) and aging-related microglia (OA3) (Hammond et al,,
2019) (Figure 1E). Cells in cluster 10, a relatively small cluster, ex-
pressed high levels of Ccl3, Ccl4, and C3ar1 (Figures 1B-1E).
Recent work identified a similar small population of microglia
present during development that expand with aging or in the
context of injury (Hammond et al., 2019), amyloidosis, and tauo-
pathies (Kang et al., 2018). Cluster 11 was identified as prolifer-
ative and was enriched for Stmn1 (Figures 1B-1E). This cluster
showed the greatest similarity to the previously reported cycling
and proliferating microglia (CPM) (Sala Frigerio et al., 2019) (Fig-
ure 1E). No clusters showed dramatic enrichment of immediate
early genes, suggesting the MACS-based isolation method did
not cause aberrant microglia activation (Wu et al., 2017)
(Figure S4).

Wild-derived strains reveal transcriptomic variation in
microglia subtypes

Next, we examined variation in microglia subtypes by comparing
the percentage of cells in each cluster between each strain/ge-
notype (Figures 2A, S5A, and S5B; Table S2). This was paired
with trajectory inference analysis, where all eight subtypes

¢? CellPress

OPEN ACCESS

were plotted across pseudotime to predict subtype transition
(Figure 2B). The percentage of homeostatic microglia (cluster
H) was significantly decreased in APP/PS1 mice of B6, CAST,
and PWK strains compared to their WT counterparts. However,
this was not the case for WSB.APP/PS1 mice, which showed a
similar abundance of homeostatic microglia to WSB WT
(Figure 2C).

Trajectory inference analysis predicted a transition of homeo-
static microglia to the Hexb"'9"/Cd81"9" microglia and DAM (Fig-
ure 2B). This suggests that differences in homeostatic clusters
between strains may correspond to differences in transitions to
other subtypes or states. There was a significantly greater per-
centage of Hexb"9"/Cd81M" microglia (cluster 8) in WSB WT
mice compared to other WT strains (Figure 2C), and these
were largely absent in WSB.APP/PS1. Importantly, while the per-
centage of DAM (clusters 6 and 12) was robustly increased in
APP/PS1 mice of B6, CAST, and PWK compared to their WT
counterparts, there was no significant increase in WSB.APP/
PS1 mice compared to their WT control. In addition, the percent-
age of IRM (cluster 7) differed between strains. PWK.APP/PS1
mice exhibited a significantly greater proportion of IRM in com-
parison with PWK WT mice. This significant APP/PS1-depen-
dent increase was not observed in other strains. B6.APP/PS1
was the only strain to show a genotype-specific increase in the
percentage of Ccl3/Ccl4-enriched cells (cluster 10). Finally,
B6.APP/PS1 and CAST.APP/PS1 showed a significant increase
in the percentage of proliferative microglia (cluster 11) compared
to their WT counterparts (Figure 2C). Collectively, these analyses
show that genetic diversity resulted in significant differences in
the abundance of microglial subtypes in our wild-derived AD
panel compared to B6.

Strain-driven transcriptome diversity predicts

functional diversity of microglia subtypes

Despite the consistency of expression of marker genes within
microglial clusters, initial clustering suggested widespread
gene expression differences among the strains (Figure S2A).
These differences could be critical for the variation we observed
in amyloid-induced outcomes (Onos et al., 2019). Given their
previous association to aging and AD, we chose to focus on ho-
meostatic (cluster H), DAM (clusters 6 and 12), IRM (cluster 7),
and Ccl3/Ccl4-enriched (cluster 10) subtypes.

We first evaluated strain and genotype differences in cluster H.
To do this, we calcuated enrichment scores based on
the average expression of a set of 23 homeostatic marker genes
(curated from previous studies; Keren-Shaul et al., 2017; Sala
Frigerio et al., 2019; Hammond et al., 2019; Gosselin et al.,
2017; Butovsky and Weiner, 2018; method details). As expected,
cluster H and 8 (Hexb™9"/Cd81"9") were highly enriched for
these homoestatic marker genes compared to cluster 6 (DAM)

Figure 2. The abundance of microglia subtypes is highly variable in B6 and wild-derived strains

(A) Percentage of microglia subtypes in WT and APP/PS1 mice of B6, CAST, PWK, and WSB.

(B) Histogram of the pseudotime (the first dimension of the diffusion map) showing the distribution of 1,000 microglia randomly sampled from each group.

(C) Boxplots showing the percentage of microglia subtypes in all groups of mice. Strain, genotype, and strain-by-genotype effects were assessed by 2-way
ANOVA followed by Tukey’s post hoc test. All comparisons (comparing WT and APP/PS1 within each strain for a given cluster) were significant (adjusted p value
[p. adj] < 0.05) except for those labeled with NS (not significant, p. adj > 0.05). Detailed p. adj values and confidence intervals for within and across strain/

genotype comparisons are reported in Table S2.
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Figure 3. Strain-specific gene expression of homeostatic microglia

(A) Violin boxplots showing the enrichment Z score of 23 classical homeostatic microglia markers (Method details) in homeostatic (clusters 0-5), Hexb"9"/
Cd81M9" (cluster 8), and DAM (cluster 6) in each strain and genotype. Significant strain and genotype effect was detected for each cluster (p = 0, two-way

ANOVA).

(B) Violin plots showing the expression of homeostatic microglia marker genes in each strain and genotype.
(C) Heatmap summarizing top 20 significantly enriched terms of diseases and functions based on DE genes from comparisons of wild-derived versus B6 samples
(corrected p value using Benjamini-Hochberg FDR (pval-BH) < 0.05, and |Z score| > 2). The dot indicates the enrichment of diseases and functions term is not
significant for a given comparison (pval-BH > 0.05).
(D and E) Examples of REs for PWK versus B6 (D) and WSB versus B6 (E) highlighting upstream regulators (top), downstream targets (middle), and diseases and
functions (bottom). The orange and blue colors indicate predicted up- or down-regulation of an upstream regulator or a diseases and functions term for a given
comparison of wild-derived strain to B6. The red and green colors show up- or down-regulation of the downstream targets as DE genes comparing a given wild-

derived strain to B6.
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(Figure 3A). However, strain-specific expression patterns were
observed in cluster H and 8. PWK showed the lowest enrichment
of homeostatic marker genes in clusters H and 8 across the
strains (p = 0, two-way ANOVA). Of the 23 genes, Fris and
OIfmI3 exhibited striking strain-specific differences. Fcrls
showed little to no expression in cluster H in PWK and WSB,
while OIfmI3 showed little expression in PWK (Figure 3B). To
further understand the underlying strain-specific differences in
cluster H, we determined differentially expressed (DE) genes
comparing cluster H gene expression between wild-derived
strains and B6 (Table S3). We then performed diseases and func-
tions analysis on the DE genes in ingenuity pathway analysis
(IPA) to predict how strain-specific differences in gene expres-
sion may lead to differences in microglia function (Figure 3C).
We also performed regulatory effect (RE) analysis (IPA) to predict
the upstream regulator(s) that may drive such functional differ-
ences for each strain (Figures 3D and 3E). As an example, dis-
eases and functions analysis predicted a downregulation in
PWK compared to other strains in terms related to ion channels
(“flux of divalent cations,” “flux of ion,” “ion homeostasis of
cells,” “flux of inorganic cation,” and “flux of Ca%*"; Figure 3D).
This included downregulation of Clec7a, Cybb, Wnt4, and Ctsb,
whose expressions are predicted to be mediated by upstream
regulators L2hgdh, Prkca, Saa83, Kira7, and Tnni3. Homeostatic
microglia are considered to be in a sensing state (Gomez-Nicola
and Perry, 2015), equipped to detect environmental changes in
order to respond to a variety of stimuli. At the center of this trans-
formation is the identification of several surface channels and re-
ceptors that are critical for entry of calcium ions (Sharma and
Ping, 2014; Thei et al., 2018). Thus, PWKs are predicted to be
a novel strain in which to understand differences related to this
process. As a second example, diseases and functions analysis
predicted a downregulation in homeostatic microglia in WSB
compared to the other strains centered on myeloid cell number
(“quantity of cells” and “stimulation of cells”; Figure 3E). This in-
cludes downregulation of Ccr2, ll1b, Tnf, and /I6 mediated by the
upstream regulator Lgals3. This supports previous work that
shows WSBs have fewer microglia than B6 in the specific brain
regions (Onos et al., 2019).

DAM and IRM are the more prominent microglia subtypes pre-
viously implicated in aging and AD (Keren-Shaul et al., 2017;
Hammond et al., 2019; Roy et al., 2020). As our study is the first
to use genetically diverse mouse strains, we sought to under-
stand the similarities and differences between these microglia
subtypes with previous mouse datasets. We first compared
the marker genes (Table S4) defining cluster 6 with the top
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marker genes from the Amit study (DAM) (Keren-Shaul et al.,
2017) and the de Strooper study (ARM) (Sala Frigerio et al.,
2019) (Figure 4A; Table S5). This identified a core set of 20 genes
conserved across all datasets and included Cst7, Clec7a, Ty-
robp, and Lpl. Genes that were present only in our dataset
were primarily ribosomal and, thus, may be reflective of differ-
ences in metabolic status of the cells at the time of sample
collection, the mouse models used, and/or the library generation
and sequencing platforms. Interestingly, Trem2, a well-known
marker gene in previously characterized DAM (Keren-Shaul
et al., 2017) and ARM (Sala Frigerio et al., 2019), was not among
the top DAM markers in cluster 6 cells from PWK and WSB.

Next, we used the 20 core DAM genes to determine how the
general characteristics of DAM change across strain and geno-
type. Similary, we calculated enrichment scores based on the
average expression of the 20 core genes in cluster 6 for WT
and APP/PS1 samples for each strain (Figure 4B). Scores were
also calculated for cluster H as a control. As expected, the
enrichment scores were highest for cluster 6 compared to the
homeostatic cluster H, irrespective of strain or genotype. Within
cluster 6, B6 showed the highest enrichment score, followed by
CAST and then PWK and WSB. Within the strain, enrichment
scores were higher in the presence of amyloid (APP/PST)
compared to WT. These data showed strain and genotype
affected not only the DAM cell abundance (Figure 2C), but also
the extent of “DAM-ness.” Further interrogation of the 20 core
DAM genes highlighted strain- and genotype-specific differ-
ences in expression of individual core genes. For example,
Cst7 was highest in B6.APP/PS1 and lowest in WSB.APP/PS1
(Figure 4C). In contrast, B6.APP/PS1 and WSB.APP/PS1 strains
showed the highest expression of Clec7a, while there was only
low expression in CAST.APP/PS1 and PWK.APP/PS1 samples
(Figure 4C). A similar analysis, comparing marker genes for clus-
ter 12 to those in the Amit and de Strooper studies, revealed a
smaller set of core genes (compared to cluster 6 analysis) (Fig-
ure S6; Table S5), further highlighting the potential that microglia
in clusters 6 and 12 form distinct subtypes. Enrichment score an-
alyses and expression of the core genes showed strain-, geno-
type-, and strain-by-genotype-specific patterns (Figures S6B
[p = 0, two-way ANOVA] and S6C).

DE genes were determined for cluster 6 by comparing wild-
derived strains to B6 (Table S3). Diseases and functions and
RE analyses (IPA) were again employed to predict the functional
consequences of gene expression differences (summarized in
Figure 4D). WSB showed a significant downregulation of a
network of genes related to “binding of endothelial cells”

Figure 4. Strain-specific gene expression of DAM (cluster 6)

(A) Upset plot illustrating the intersection of the top DAM signature genes in B6 and wild-derived strains and top signature genes defining DAM from the Amit study
(Keren-Shaul et al., 2017) and ARM in the de Strooper study (Sala Frigerio et al., 2019). Specific genes in selected intersections are detailed on the plot. Core
genes shared by all datasets are highlighted in the orange box; genes shared only in our B6 and wild-derived strains are colored in gray.

(B) Violin boxplots showing the enrichment Z score of the core DAM genes in cluster H (homeostatic) and cluster 6 for each strain and genotype. Significant strain
and genotype effects were detected (p = 0, two-way ANOVA).

(C) Violin plots showing the expression of selected DAM core genes in cluster 6 for each strain and genotype.

(D) Heatmap summarizing top 20 significantly enriched diseases and functions (IPA) terms based on DE genes from comparisons of wild-derived versus B6 mice
(pval-BH < 0.05, |Z score| > 2). The dot indicates the enrichment of diseases and functions term is not significant for a given comparison (pval-BH > 0.05).
(E) Example of an RE for WSB versus B6 highlighting the of “binding of endothelial cells.”

(F) Example of an RE for CAST versus B6 highlighting network of “apoptosis of myeloid cells” and “cellular infiltration by mononuclear leukocytes.” The color
code is the same as described in Figures 3D and 3E.
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including integrins (e.g., ltga6 and Itgal) that are necessary for the
binding of myeloid cells to endothelial cells (Figure 4E). In our
previous study, WSB.APP/PS1 showed the highest levels of ce-
rebral amyloid angiopathy (CAA), associated with vascular
leakage and neuronal loss (Onos et al., 2019). Therefore, these
data suggest that WSB.APP/PS1 is an important model to un-
derstand the interplay between microglial function and vascular
damage in AD. In a second example, CAST showed a significant
activation of genes related to “cellular infiltration of mononuclear
leukocytes,” regulated by IL3 (Figure 4F). IL3 is a growth
factor and cytokine involved in homing microglia to plagues
and is thought to be neuroprotective (Zambrano et al., 2007).
IL3 enrichment is driven by the upregulation of genes
including Vcam1, Cd14, and Casp3 in CAST DAM compared to
B6 DAM.

Recent evidence supports an important role of IRM in AD and
other brain disorders (Sala Frigerio et al., 2019; Hammond et al.,
2019; Roy et al., 2020; Hur et al., 2020). Therefore, similar ana-
lyses to that described above for DAM were performed,
comparing cluster 7 to IRM-like populations identified in the de
Strooper (Sala Frigerio et al., 2019) and Stevens (Hammond
et al., 2019) studies (Figure 5A; Table S5). A set of 18 core genes
was identified in all IRM-like subtypes and included /fitm3, Ifit3,
and Irf7. Enrichment scores of these 18 genes were generally
higher in APP/PS1 compared to WT samples across the strains
(Figure 5B), although significant strain-, genotype- and strain-by-
genotype differences in gene expression were observed (Fig-
ure 5C). Diseases and functions analysis of DE genes comparing
IRM from wild-derived strains to B6 identified multiple terms pre-
dicted to alter function (Figure 5D). For instance, a network
related to “liver damage” was upregulated in CAST compared
to B6 (Figure 5E). Genes in this network included Irf7, Birc3,
Tnfsf10, 116, Serpine1, and Tab1 (predicted to be the upstream
regulator), which have been shown to be DE in brains of AD pa-
tients (Agora Consortium, 2020) and identified as targets for ther-
apeutics (Costa et al., 2017; Romagnoli et al., 2020; Calandria
et al., 2015; Riphagen et al., 2020; Cantarella et al., 2015; Kutz
et al., 2012; Caraci et al., 2012). Based on our data, CAST would
be a more appropriate strain than B6 to assess drugs that target
genes in this network. In contrast, “activation of lymphocytes”
and “antimicrobial response” were downregulated in CAST
compared to B6 (Figure 5F). Interferons are a group of cytokines
secreted in response to stress or viral infection and are associ-
ated with autoimmune diseases. Patients with HIV-induced de-
mentia exhibit increases in interferon activation (Gray et al.,
1996), and the viral theory of AD has recently made a resurgence
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(ltzhaki et al., 2020). Upstream regulators NLRX1, NKX2-2, and
TLRS are all related to type-1-interferon-triggering components
such as STAT7 and MYD88. Nucleic acid (NA)-containing amy-
loid fibrils can potently induce this cascade (Roy et al., 2020).
Furthermore, increases in NLRX1, cytoplasmic NOD-like recep-
tors localized to the outer membrane of mitochondria, have been
associated with increased production of reactive oxygen spe-
cies (Abdul-Sater et al., 2010). This suggests that strategies
that compare CAST.APP/PS1 (low expressers) with PWK.APP/
PS1 (high expressers) would be appropriate to parcel this rela-
tionship between viral immune pathways and AD.

The final cluster we focused on was cluster 10, termed
Ccl3"9h/Ccl4™9" microglia. We compared the top marker genes
for cluster 10 with an “age-related” subpopulation identified in
the Stevens study (Hammond et al., 2019) (Figure S7A; Table
S5). Although 12 top marker genes were common between our
study and the Stevens study, 21 marker genes were unique to
the Stevens study, including genes commonly associated as
DAM genes (e.g., Spp1, Cst7, Apoe, B2m, and Ccl6). This may
be due to the age difference between the mice sampled in our
study (9 months old) and those sampled in the Stevens study
(18 months old) and suggests this age-related Ccl3"9"/Ccl4hoh
subpopulation polarizes toward DAM-like during aging. Enrich-
ment analysis revealed subtle yet significant strain-, genotype-
and strain-by-genotype differences (Figure S7B). Interestingly,
Lpl expression was only present in the B6 strain (Figure S7C).
Further analysis of diseases and functions found that in compar-
ison with B6, CAST show a downregulation in pathways relevant
to “multiple sclerosis,” “inflammatory demyelinating disease,”
and “extravasation of cells” (Figures S7D and S7E). A previous
study has localized these cells to the center of active demyelin-
ating lesions in multiple sclerosis patients (Hammond et al.,
2019), and they are suggested to signal to peripheral immune
cells. The downregulation of this gene network in CAST mice
suggests that the loss of neurons we have previously reported
in CAST.APP/PS1 (Onos et al., 2019) may be independent of
damage caused by infiltrating immune cells.

Comparison of genetically diverse mouse microglia with
human microglia

A critical and active area of investigation is the comparison be-
tween human and mouse microglia. Mouse models will likely
play a major role in identifying potential microglia-based thera-
pies to treat AD. Here, we chose four studies (Zhou et al.,
2020; Johnson et al., 2020; Mathys et al., 2019; Olah et al.,
2018) that surveyed human microglia to compare to our

Figure 5. Strain-specific gene expression of IRM

(A) Upset plot illustrating the intersection of the top IRM marker genes in B6 and wild-derived strains integrated with Aging_OAS3 cluster from the Stevens study
(Hammond et al., 2019) and IRM from the de Strooper study (Sala Frigerio et al., 2019). The genes in selected intersections are detailed in the plot. Core genes
shared by all datasets are highlighted in the orange box.

(B) Violin boxplots showing the enrichment Z score of the 18 core IRM signature genes in cluster H (homeostatic) and cluster 7 (IRM) for each strain and genotype.
Significant strain and genotype effects were detected for each cluster (p = 0, two-way ANOVA).

(C) Violin plots showing the expression of selected IRM core genes in cluster 7 for each strain and genotype.

(D) Heatmap summarizing top 20 significantly enriched terms of diseases and functions based on DE genes from comparisons of wild-derived versus B6 mice
(pval-BH < 0.05, |Z score| > 2). The dot indicates the enrichment of diseases and functions term was not significant for a given comparison (pval-BH > 0.05).
(E) Example of an RE for CAST versus B6 highlighting network of “immune response of cells” and “liver damage.”

(F) Example of a second RE for CAST versus B6 highlighting “antimicrobial response” and “activation of T lymphocytes.” The color code is the same as described
in Figures 3D and 3E.
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Figure 6. Comparison of cluster 6 (DAM) with human microglia

(A) Violin boxplots showing the enrichment Z score of the top marker genes defining microglia from four studies: Mic1 from Tsai (Mathys et al., 2019); Micro0 from

Colonna (Zhou et al.,

2020); aged microglia from Bradshaw (Olah et al., 2018); and M4 microglia module from Seyfried (Johnson et al.,

2020).

(B) Violin boxplots showing the enrichment Z score of the top marker genes of the Mic1 cluster from the Tsai study for each strain and genotype. Significant strain

and genotype effects were detected for each cluster (p = 0, two-way ANOVA).

(C) Upset plot illustrating the intersection of the top DAM marker genes in B6 and wild-derived strains integrated with top marker genes associated with human
Mic1 cluster (Tsai) (Mathys et al., 2019). The genes in selected intersections are detailed in the plot. Core genes shared by all datasets are highlighted in the orange
box; genes shared in our B6 and wild-derived strains but not Mic1 are colored in gray.
(D) Violin plots showing the expression of selected genes for each strain and genotype.

genetically diverse mouse microglia dataset. Two datasets were
generated via single-nucleus RNA-seq (Mic1 from Tsai study
[Mathys et al., 2019] and Micro0 from the Colonna study [Zhou
et al., 2020]), one was generated via bulk RNA-seq of isolated
aged microglia by Bradshaw and colleagues (Olah et al., 2018),

and one (module 4, enriched for microglial genes) was obtained
from the proteomics study performed by Seyfried and col-
leagues (Johnson et al., 2020). The marker gene set for Mic1
(Tsai) showed the highest enrichment values compared to the
other three datasets, with clusters 6, 9, and 12 showing the
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greatest alignment (Figure 6A). The poor alignment with MicroO
(Colonna) may be because the AD patients were enriched from
common or rare variants in TREMZ2. The poor alignment with
the Bradshaw and Seyfried datasets may be due to differences
in sample type, preparation, and sequencing technologies.

Given the greatest similarity across the human datasets was
observed from the Tsai study (Mathys et al., 2019), enrichment
scores for our clusters were calculated using the Mic1 marker
genes (method details). The resulting enrichment score was
significantly affected by strain-, genotype-, and strain-by-geno-
type (Figure 6B; p = 0, two-way ANOVA). For instance, CAST
and PWK displayed slightly yet significantly higher enrichment
scores than B6 and WSB for clusters 6, 9, and 12 (Figure 6B).
Comparisons between Mic1 and cluster 6 across all strains iden-
tified 18 core signature genes that included the classical DAM
genes such as Apoe and Tyrobp, but also the ribosomal genes
(Figures 6C and 6D; Table S5) that had been absent in mouse
DAM datasets from previous studies (Keren-Shaul et al., 2017;
Sala Frigerio et al., 2019) (Figure 4A). Interestingly, 19 of the 77
Mic1 marker genes were identified in only one or some, but not
all, of the mouse strains. For instance, ribosomal proteins
Rps3, Rps16, Rpl26, and Rpl27a were common between Mic1
and all wild-derived strains (CAST, WSB, and PWK) but not B6.
Tmem163 was common between Mic1 and PWK. Spp7 was
common among Mic1, PWK, and B6. These data support the
use of genetically diverse mouse strains to improve the align-
ment to human studies. However, the Mic1 dataset lacks other
classic mouse DAM genes—including Cst7, Clec7a, and Lpl
(Figure 6C)—that have been identified in multiple mouse studies
including our own (Figure 4A), suggesting further work is required
to elucidate apparent species-specific differences in microglial
subtypes such as DAM.

Human AD-relevant GWAS genes are differentially
expressed in microglia subtypes

Variation in microglia-relevant genes is differentially associated
with AD risk. However, previous studies to determine roles of
GWAS genes in AD have primarily been limited to B6. Therefore,
we aimed to determine whether our wild-derived AD panel pro-
vided an enhanced platform to study human AD-relevant genes
using a panel of 54 GWAS genes identified in two recent meta-
analyses (Table S6) (Jansen et al., 2019; De Rojas et al., 2020).
A total of 36 microglia-relevant genes were detectable across
our panel. Nineteen of the 36 genes (52%) were DE (false discov-
ery rate [FDR] < 0.05) in at least one cluster comparing wild-
derived strains to B6 (Figure 7A). Genes could be DE in only
one cluster of one strain (e.g., Adam10 in cluster 8, CAST versus
B6; Bin1 in cluster 8, PWK versus B6; Inpp5d in cluster 6, PWK
versus B6; and Pilra in cluster 6, WSB versus B6), while other
genes were DE in multiple clusters within a specific strain (e.g.,
Ptk2b and Ndufal in CAST; App and Sorl1 in PWK). Scimp and
Apoe were DE in at least one cluster in all wild-derived strains
compared with B6. The expression in WT and APP/PS1 mice
across the four strains was then determined for cluster H,
DAM, and IRM (Figure 7B). This further highlighted strain- and
genotype-specific differences in GWAS genes. For instance,
Sorl1 was expressed in many more cells in IRM (cluster 7) from
PWK mice compared to B6, CAST, and WSB. Moreover, the
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relative expression level of Sorl1 was significantly increased in
PWK.APP/PS1 compared to PWK mice. Therefore, these data
further support the use of specific or contrasting wild-derived
strains for more extensive and informative functional studies of
AD-relevant GWAS genes.

DISCUSSION

Single-cell sequencing of microglia from wild-derived and B6
mouse strains revealed that natural genetic variation led to sig-
nificant differences in populations of microglia subtype and
gene expression profiles that are predicted to impact microglia
biology, likely resulting in inherently different neuroimmune envi-
ronments in healthy and diseased states. As with all genomic
studies, these predicted differences will need to be validated
and the functional consequences determined. These observed
variations in microglia subtypes or states between strains likely
influence, or are influenced by, other cell types including astro-
cytes, endothelial cells, and neurons. While these data provide
further evidence for the value of mouse genetic diversity to un-
ravel the complexity of neuroinflammation in AD, future work
will need to assess additional cell types. Further, in this study,
microglia from female mice at one age (9 months) were profiled.
In addition to all the strain- and strain-by-genotype-specific
changes observed in this dataset, sex-, brain-region- and/or
age-specific changes are still to be determined.

Differences across wild-derived strains in microglia subtypes
often showed downregulation of specific biological pathways
in comparison to B6. While B6 has been used across biomedical
research for practical and historical reasons, such work may be
inherently biased to neuroimmune responses driven by a singu-
lar genetic context, with limited translation to humans. For
example, B6 (as well as other commonly used strains such as
DBA/2) carries a mutation in the P2rx7 locus that severely im-
pairs important functions of this receptor. This is thought to influ-
ence critical steps relating to induction of apoptosis and cytokine
secretion. In contrast, wild-derived strains carry the “natural”
variant (Adriouch et al., 2002). Another key consideration is
that previous microglia sequencing projects have used the
5XFAD model. There are two versions of this model: one con-
genic on B6 (JR# 34848) and the other more commonly used
B6.SJL mixed genetic background (JR# 34840). SJL mice carry
the Trem25748F mutation, which means that in this 5XFAD strain,
Trem2 could be heterozygous, homozygous, or WT, influencing
microglia function differently within the same study or across
studies. These inconsistencies in both amyloid drivers and ge-
netic context have likely contributed to the lack of alignment be-
tween mouse and human studies when not taken into account.
Our study supports incorporating genetic diversity in this spe-
cific way to elucidate the roles of microglia in AD in conjunction
with more late-onset AD-relevant variants.

We detected significant strain-, genotype- and strain-by-ge-
notype differences. These were in both the abundance of micro-
glia subtypes and gene expression that, in combination with
pathway analysis and neuropathology, are predictive of func-
tional differences that may be beneficial or damaging, depending
on the stage of disease. For example, homeostatic microglia are
typically defined as being in a sensing state, sampling the brain
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Figure 7. Microglia subtypes from wild-derived
strains show differentially expressed AD-rele-
vant GWAS genes

(A) Nineteen AD-relevant GWAS genes were DE
comparing wild-derived strains to B6 for all eight mi-
croglia clusters. The dot indicates the gene was
significantly DE (FDR < 0.05) comparing CAST, PWK, or
WSB to B6 in a given cluster.

(B) Dot plot (left) showing the percentage of cells ex-
pressed and the expression levels of significant strain-
specific DE genes in homeostatic microglia (cluster H),
DAM (cluster 6), and IRM (cluster 7) across all groups.
Heatmap (right) highlighting the log2-based fold change
(log2FC) of the corresponding gene expression
comparing CAST, PWK, and WSB to B6 in clusters H, 6,
and 7. The dot in the heatmap indicates the fold change
for a given comparison was not significant (FDR >
0.05).
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environment for debris and potential pathogens. If a signal is
encountered, they quickly become "activated" —sometimes re-
fered to as aresponding state—to deal with the threat. Upon res-
olution, microglia are expected to revert to their surveillance role.
One theory regarding the influence of microglia to disease sus-
ceptibility is that once triggered, these microglia cannot revert,
becoming chronically “activated,” signaling to other local im-
mune cells, and potentially causing damage to healthy tissue
(McQuade and Blurton-Jones, 2019). Our data predict natural
genetic variation influences the baseline responsiveness, effi-
ciency of response, and reversion to surveillance. Initial clus-
tering of microglia identified six groups of homeostatic-like
microglia that were collapsed into one cluster based upon simi-
larity of marker gene expression. However, initial clustering pre-
dicted subtle but distinct functional differences that remain to be
resolved. The function of Hexb"9"/Cd81M9" cells (cluster 8) is not
clear. Cells showed higher expression levels of Cst3, Cd81, and
Hexb compared to the homeostatic cluster. Two small Hexb-
related clusters that display a signature of lipid metabolism
and phagocytosis have been previously reported (Keren-Shaul
et al., 2017); however, those clusters do not fully align with clus-
ter 8. Alternatively, given that pseudotime analysis suggested
that this subtype transitioned in the opposite direction to acti-
vated subtypes like DAM and IRM, cells in cluster 8 may repre-
sent a microglia “reserve” pool. Interestingly, Hexb"'9"/Cdg1Migh
microglia also have the highest expressions of P2ry12, and
P2ry12-mediated chemotaxis is critical for closure of the
blood-brain barrier after injury (Lou et al., 2016). In this process,
homeostatic microglia elevate the expression of P2ry12 rather
than transition into an activation state (such as DAM). The higher
levels of this population in WSB could play a larger role in age-
related health of their vasculature, and in the context of amyloid,
this population may disappear as they attempt to transition to
other microglia states. Overall, WSB appears to be an important
genetic context to discover more about this novel Hexb"d"/
Cd81™9" microglia subtype.

Two DAM-like clusters (clusters 6 and 12) were identified
based on lower expression of Cx3cri, higher expression of
Tyrobp and Cst7, and increased ribosomal gene expression in
cluster 12 compared to cluster 6. Two previous studies have re-
ported two subtypes of DAM. In one study, two DAM subtypes
were suggested to represent Trem2-specific transition states
(Keren-Shaul et al., 2017), while the second study predicted
proinflammatory and anti-inflammatory subtypes (Rangaraju
et al., 2018). However, these differences in DAM-like cell popu-
lations were not seen in our study. This may be due to multiple
reasons including sample collection and analysis methods but
may also be due to the amyloid-driving transgenes used. Micro-
glia activation and amyloid accumulation have been identified as
early as 6 weeks in 5xFAD mice (Oakley et al., 2006; Onos et al.,
2019; Boza-Serrano et al., 2018) but are not apparent until
4-5 months in B6.APP/PS1 mice (Jackson et al., 2013; Chinta-
paludi et al., 2020). DAM populations in our wild-derived and
B6 AD panel were also significantly smaller than has been previ-
ously reported in another amyloid strain, B6.APPS*¢/PS1-765F
(Sierksma et al., 2020), which is also an aggressive amyloid strain
with plaque accumulation observed as early as 6 weeks (Radde
et al., 2006)
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CAST.APP/PS1 showed the greatest proportion of DAM (clus-
ters 6 and 12), which is consistent with our previous work that
showed CAST.APP/PS1 had the greatest number of plaque-
associated microglia (Onos et al., 2019). Given that CAST.APP/
PS1 showed significant neuronal loss in the hippocampus, this
indicates a connection between a strong DAM response and
neurodegeneration. However, whether the DAM response is
beneficial or damaging is still to be elucidated. Interestingly,
WSB.APP/PS1, which did not show a significant increase in
DAM compared to their WT counterparts, also showed neuronal
cellloss (Onos et al., 2019). Gene expression analyses predicted
a downregulation of genes related to cellular interactions with
endothelial cells in WSB compared to B6. CAA and vascular
dysfunction were previously identified in WSB.APP/PS1 mice
(Onos et al., 2019), and CAA is thought to be independent of neu-
roinflammation in human AD patients (Greenberg et al., 2020).
Recent work used the CSF1R inhibitor PLX5622 to deplete mi-
croglia in 5XFAD, resulting in an almost-complete loss of amyloid
in the parenchyma and significant CAA and vascular leakage
(Spangenberg et al., 2019). Given the presence of other micro-
glial subtypes in WSB.APP/PS1 mice, these data suggest DAM
may be specific determinants of the balance between paren-
chymal- and vascular-based amyloid. In light of these findings,
WSB.APP/PS1 may be an ideal strain to dissect the relationship
between amyloidosis, CAA, and vascular dysfunction in AD
without the need to deplete brains of all microglia. If these differ-
ences in DAM also translate to humans, there are likely patients
who show an elevated DAM response and patients who do not.
This could partially explain the controversy over the alignment of
DAM populations in humans and mice.

Our study highlights the importance of broadening interest in
microglia subtypes beyond DAM. IRM were significantly different
between strains, with only PWK.APP/PS1 showing a significant
increase compared to WT. The interferon response is a complex
process that can trigger the expression of thousands of inter-
feron-stimulated genes (ISGs). Commonly, the interferon
response is thought to be triggered in response to a viral infec-
tion, and strain differences in viral response have been identified.
CAST is uniquely susceptible to infections such as influenza
H3N2 and monkeypox virus. In the case of influenza H3N2,
despite high viral load in the lungs, CAST exhibited an abnormal
response in leukocyte recruitment (Leist et al., 2016). Even at low
inoculums of monkeypox virus, CAST showed rapid spread to all
internal organs. This was shown to be directly related to defi-
ciency in gamma interferon (Earl et al., 2012). In AD, the inter-
feron response can be triggered by NA-containing plaques. In
our study and other studies, IRM are defined by the presence
of interferon regulator gene Irf7 as well as ISGs Ifitm3 and [fit3.
In one recent study, brain samples showed the presence of
IFITM3+ microglia in NA* plaques (Roy et al., 2020). Enhancing
the interferon response in a B6.5xFAD exacerbated synapse
loss. In contrast, our study supports a beneficial role for IFITM3+
IRM in AD: PWK.APP/PS1 showed increased level of IRM
compared to the other strains and are resilient to neurodegener-
ation at 8 months (Onos et al., 2019). In support of this, mice defi-
cient for IFITM3 are more susceptible to viral infection (Kenney
et al., 2019). A recent study also showed the IFITM3 modulates
gamma-secretase activity in AD (Hur et al., 2020). Given
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the multitude of outcomes downstream of the interferon
response, it is critical we continue to understand the specific
roles of IFITM3+ cells in AD.

In conclusion, this wild-derived AD panel offers a level of ge-
netic and phenotypic diversity that can aid in determining the
role of microglia in human AD. There will be continued debate
regarding the level at which the mouse immune system should
be “humanized” in order to better model human immune func-
tion. However, based on our data, and with improved tools and
resources such as strain-specific gene editing protocols and
reporter and Cre lines, integrating the use of wild-derived
strains appears essential to more closely align mouse studies
to human AD.
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KEY RESOURCE TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER
Chemicals, peptides, and recombinant proteins

HBSS (10X) ThermoFisher Scientific Cat#14185-052
HEPES ThermoFisher Scientific Cat#15630080
Glucose solution Sigma-Aldrich Cat#49163
DNase | Worthington Cat#DPRFS
FBS ThermoFisher Scientific Cat#16000069
BSA Jackson ImmunoResearch Cat#001-000-173
Ultrapure EDTA ThermoFisher Scientific Cat#15575020
PBS (10X) ThermoFisher Scientific Cat#70011044
Trypan Blue Stain (0.4%) ThermoFisher Scientific Cat#T710282
Critical commercial assays

Chromium Single Cell 3’ Reagent Kits 10X Genomics Cat#CG00052

CD11b Microglia Microbeads
Myelin removal Beads I

Miltenyi Biotec
Miltenyi Biotec

Cat#130-049-601
Cat#130-096-733

Deposited data

Raw and processed data and metadata
spreadsheet

Shiny app for searching B6 and wild
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Zhou et al., 2020
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Johnson et al., 2020
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https://wild_microglia_scrna-seq.jax.org/
https://github.com/TheJacksonLaboratory/wild_AD_
mic_scRNA
https://www.cell.com/fulltext/S0092-8674(17)30578-0
GEO: GSE127893
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https://www.nature.com/articles/s41591-019-0695-9
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https://www.nature.com/articles/s41467-018-02926-5
https://www.nature.com/articles/s41591-020-0815-6

Experimental models: organisms/strains

B6.Cg-Tg(APPswe, PSEN1dE9)85Dbo/Mmjax The Jackson Laboratory Stock#005864

CAST.APP/PS1 The Jackson Laboratory Stock#25973

PWK.APP/PS1 The Jackson Laboratory Stock#25971

WSB.APP/PS1 The Jackson Laboratory Stock#25970

Software and algorithms

scBASE Choi et al., 2019 https://hub.docker.com/r/kbchoi/asesuite-sc

bcl2fastq (v 2.20.0.422)

Seurat (v 3.1.2)

el Cell Reports 34, 108739, February 9, 2021

lllumina

Stuart and Satija, 2019;
Butler et al., 2018

https://support.illumina.com/sequencing/sequencing_
software/bcl2fastq-conversion-software.html

https://satijalab.org/seurat/
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

edgeR (v 3.28.0) Chen et al., 2016; Robinson https://bioconductor.org/packages/release/bioc/html/
et al., 2010; McCarthy edgeR.html
et al., 2012

R (v 3.6.0) R Core Team https://www.r-project.org/

RStudio Server Pro (1.3.1056-1) RStudio https://rstudio.com/

Ingenuity Pathway Analysis QIAGEN NA

UpSetR (v 1.4.0) Conway et al., 2017 https://github.com/hms-dbmi/UpSetR

Others

MACS SmartStrainer (70 um) Miltenyi Biotec Cat#130-098-462

LD columns Miltenyi Biotec Cat#130-042-901

LS columns Miltenyi Biotec Cat#130-042-401

Supreme Mini-treats BioServ Cat#F05472 or FO5711

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Gareth
Howell (gareth.howell@jax.org).

Materials availability
All mouse strains are available through The Jackson Laboratory. All reagents in this study are commercially available.

Data and code availability

The raw data, processed data, and sample information in the study are available via the AD Knowledge Portal (http://
adknowledgeportal.synapse.org). The AD Knowledge Portal is a platform for accessing data, analyses, and tools generated by
the Accelerating Medicines Partnership (AMP-AD) Target Discovery Program and other National Institute on Aging (NIA)-supported
programs to enable open-science practices and accelerate translational learning. The data, analyses and tools are shared early in the
research cycle without a publication embargo on secondary use. Data is available for general research use according to the following
requirements for data access and data attribution (http://adknowledgeportal.synapse.org/DataAccess/Instructions). For access to
content described in this manuscript see: https://doi.org/10.7303/syn23763409. All the code for the data analysis is available at JAX
Github repository (https://github.com/TheJacksonLaboratory/wild_AD_mic_scRNA). A shiny app for querying microglia genes is
available at (https://wild_microglia_scrna-seq.jax.org/).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Ethics statement

All research was approved by the Institutional Animal Care and Use Committee (IACUC) at The Jackson Laboratory (approval number
12005). Authors performed their work following guidelines established by the “The Eighth Edition of the Guide for the Care and Use of
Laboratory Animals” and euthanasia using methods approved by the American Veterinary Medical Association.”

Mouse strains and cohort generation

All mice were bred and housed in a 12/12 hours light/dark cycle on aspen bedding and fed standard 6% LabDiet Chow. Experiments
were performed on four mouse strains: B6.Cg-Tg(APPswe, PSEN1dE9)85Dbo/Mmjax (JAX stock #005864), CAST.APP/PS1 (JAX
Stock #25973), WSB.APP/PS1 (JAX Stock #25970) and PWK.APP/PS1 (JAX Stock #25971). Generation of experimental cohorts con-
sisted of 6 female mice (APP/PS1 carriers and littermate wild-type controls). Due to increased pup mortality in the wild-derived
strains, once determined to be pregnant, female mice were removed from the mating and housed individually. During this time,
they were also given BioServ Supreme Mini-treats (Chocolate #F05472 or Very Berry Flavor #F05711) in order to discourage pup
cannibalism. Mice were initially group-housed during aging and then individually housed if fighting occurred. Brains were harvested
from all mice at 8-9 months of age.
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METHOD DETAILS

Single myeloid cell preparation

Four mice were included in each of the B6, B6.APP/PS1, CAST, CAST.APP/PS1, WSB, and WSB.APP/PS1 groups (n = 4), five in
PWK (n = 5) and three in PWK.APP/PS1 (n = 3) for initial sample preparation and sequencing. However, two PWK samples and
one CAST.APP/PS1 sample were excluded due to failed execution in scBASE pipeline, resulting in three mice for each of the
PWK and CAST.APP/PS1 groups (n = 3). With modification from the protocol of Bohlen et al. (2019), brain myeloid single-cell sus-
pension were obtained through mechanical dissociation followed by magnetic-activated cell sorting (MACS). All procedures were
performed on ice or under 4°C to avoid ex vivo activation of microglia during the sample preparation. Mice were anesthetized using
ketamine/xylazine (10 mg ketamine and 2 mg xylazine in 0.1ml sterile pure water per 10 g body weight) and perfused using ice cold
homogenization buffer [Hank’s balanced salt solution (HBSS) containing 15mM HEPES and 0.5% glucose]. Brains were quickly
dissected and transferred on ice. Each brain was minced using a scalpel and then homogenized using a 15 mL PTFE tissue grinder
(4-5 strokes) in 2mL homogenization buffer containing 320KU /ml DNasel (Worthington. Cat# DPRFS). The cell suspension was trans-
ferred to a 50 mL tube and passed through a pre-wet (with homogenization/DNAase | buffer) 70 micron cell strainer. The filtered cell
suspension was then transferred into a 15 mL tube and spun down at 500 g for 5 minutes at 4°C. The supernatant was discarded, and
the cell pellet was resuspended in 2 mL MACS buffer [Phosphate-buffered saline (PBS) with 0.5% BSA and 2mM Ultrapure EDTA] for
myelin removal procedure. 200 uL Myelin Removal Beads Il (Miltenyi Biotec #130-096-733) was added to the cell suspension and
mixed gently by pipetting. The cell suspension was then divided into two 2 mL microcentrifuge tubes (1 mL per tube) and incubated
for 10 minutes at 4°C. The cell suspension in each tube was diluted up to 2 mL with MACS buffer and centrifuged for 30 s at 9300 g,
4°C. The supernatants were discarded, and the cell pellets were resuspended in 1.5 mL MACS buffer per tube. The cell suspensions
from each tube were transferred to two pre-wet LD columns (with MACS buffer, two LD columns for one brain sample, Miltenyi Biotec
#130-042-901) and the cell flow-through were collected in 50 mL tubes on ice in a big covered Styrofoam cooler. The LD columns
were rinsed twice with 2 mL MACS buffer. The flow-throughs were divided into multiple 2 mL tubes and centrifuged for 30 s at 9300 g,
4°C. The supernatants were discarded, and the cell pellets were resuspended collectively in TmL PBS for each sample. The brain
myeloid cells were enriched by MACS using CD11b MicroBeads (Miltenyi Biotec # 130-049-601) according to manufacturer’s in-
structions. The cell viability was indicated by Trypan Blue and live/dead cell numbers were determined using an automated cell
counter. Samples with cell viability more than 80% were subjected to single-cell RNA sequencing.

Single-cell library preparation and RNA-sequencing

MACS-enriched brain myeloid cells were subjected to single-cell library preparation. For each sample approximately 12,000 cells
were washed and resuspended in PBS containing 3% FBS and immediately processed as follows. Single-cell capture, barcoding
and library preparation were performed using the 10X Chromium platform (10X Genomics), using version 3 chemistry according
to the manufacturer’s protocol (10X Genomics #CG00052). The resulting cDNA and indexed libraries were checked for quality on
an Agilent 4200 TapeStation, quantified by KAPA gPCR, and pooled for sequencing on 16.67% of lane of an lllumina NovaSeq
6000 S2 flow cell, targeting 6,000 barcoded cells with an average sequencing depth of 50,000 reads per cell. lllumina base call
(bcl) files for the samples were converted to FASTQ files using CellRanger bcl2fastq (version 2.20.0.422, lllumina).

Gene expression quantification from scRNA-seq data

The analysis pipeline of scBASE (Choi et al., 2019) was used in order to avoid alignment bias due to differences in genetic background
of mouse strains. First, we built the read alignment index by combining the custom strain-specific transcriptomes of CAST/Eid, PWK/
PhJ, WSB/EiJ, and C57BL/6J, created with g2gtools (http://churchill-lab.github.io/g2gtools). We removed PCR duplicates from the
raw scRNA-seq data, and then aligned the remaining reads to the pooled transcriptome of the four strains using bowtie (Langmead
et al., 2009) with ‘—all’, ‘—best’, and ‘—strata’ options. We processed the resulting bam files into an alignment incidence matrix
(emase format) using alntools (https://churchill-lab.github.io/alntools) and quantified gene expression for each cell with emase-
zero (Raghupathy et al., 2018) (https://github.com/churchill-lab/emase-zero). We collated the estimated UMI counts into a loom
formatted file (http://loompy.org) for downstream analysis. A docker container in which all the above-mentioned software tools
are pre-installed is freely available at https://hub.docker.com/r/kbchoi/asesuite-sc.

Identification of brain myeloid cell types and microglia subtypes

First, we identified myeloid cell types by filtering out non-myeloid cells using a standard Seurat (v3.1.2) (Butler et al., 2018; Stuart and
Satija, 2019) clustering pipeline for each strain, respectively. Cells with fewer than 600 detected genes or higher than 8% of mitochon-
drial genes were removed before initial analysis. We performed dimension reduction using PCA followed by UMAP using 3,000 most
variable genes after normalizing the UMI counts. We identified marker genes for each clusters (FindAlIMarkers) with default setting,
and then annotated each cluster using enrichCellMarkers package (Zhang et al., 2019). We repeated the same clustering analysis
after filtering out non-myeloid cells to refine PCA projection of myeloid cell types for each strain. We integrated myeloid cell clusters
across the mouse strains (IntegrateData) and repeated the same clustering analysis. We identified a total of 91,201 myeloid cells
including microglia, perivascular macrophage, monocytes and neutrophil (22,212 from B6, 24,976 from CAST; 20,192 from
PWK and 23,821 from WSB, Figure S1). Next, for microglia sub-clustering, we selected only those cells defined as microglia
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(unintegrated data) for integration and repeated the same clustering analysis. We identified a total of 87,746 microglia composed of
13 putative microglia subtypes (20,732 from B6, 24,124 from CAST, 19,702 from PWK and 23,188 from WSB, Figures S1A-S1D and
S2A-S2C).

Differential gene expression and marker gene identification of microglia subclusters

The strain, genotype and strain by genotype effect on single-cell gene expression for each microglia cluster was assessed by edgeR
package (Robinson et al., 2010; Chen et al., 2016; McCarthy et al., 2012). The single-cell microglia gene raw counts from a given
cluster of each sample was summed as pseudo-bulk gene expression data before passing to standard differentially expressed
(DE) gene analysis pipeline of edgeR using a quasi-likelihood method (gimQLFTest function) (http://bioconductor.org/books/
release/OSCA/). The gene expression model was built to access the strain, genotype and strain by genotype effect while regressing
out batch effect (psedo-bulk gene expression/cluster ~strain + genotype + strain:genotype + batch). The complete DE gene analysis
results with all coefficients for each cluster were reported in Table S3 (FDR < 0.05 is considered significant). The initial myeloid and
microglia marker genes for each clusters were determined using FindAlIMarkers with the default Wilcoxon rank sum test in Seurat
package, comparing gene expression of a given cluster to the rest of the clusters with all groups combined (Figures 2, 3, and 4,
p.adj < 0.05 was considered significant). For strain-specific microglia marker gene comparison ( Figures 4, 5, and S7; Table S5),
DAM (cluster 6 and 12), IRM (cluster 7), Ccl3"S"/Ccl4™9" (cluster 10) microglia were compared to homeostatic microglia within
each strain (genotype combined) using FindMarkers with Wilcoxon rank sum test in Seurat package.

Comparison of published mouse and human microglia states/module and enrichment analysis

We extensively compared our dataset to publicly available microglia datasets from both mice and human. We extracted the marker
gene sets of previously identified aging or AD-relevant microglia states from mice (B6 background): disease-associated microglia
(DAM, see Table S3 in Keren-Shaul et al., 2017); activated response microglia (ARM), cycling and proliferating microglia (CPM)
and interferon-response microglia (IRM) reproduced using meta data spreadsheet and count matrix from GSE127893 (Sala Frigerio
etal., 2019); Aging OA2 and OA3 microglia (Hammond et al., 2019). We also extracted the marker sets of previously determined aging
or AD-relevant microglia states/module in human: Mic1 population from Table S7 (Mathys et al., 2019); Micro0 population from Table
S4 (Zhou et al., 2020); aged microglia from Supplemental Data 1 (Olah et al., 2018); M4 microglia module from Table S5 (Johnson
et al., 2020). To evaluate the enrichment of mark gene sets in each microglial cells in our dataset, we calculated the average expres-
sion levels of each gene of marker sets for each cell, subtracted by the aggregated expression of random control gene sets, using
Seurat’s “AddModuleScore” function. The resulting z-scores were plotted in a violin-boxplot according to clusters, strains, or
genotypes.

For cluster annotation (Figure 1E), we selected positive microglia state markers from DAM, ARM, Aging OA2, IRM, Aging OA3, CPM
using a stringent threshold [-logo(FDR) > 10 and log,(FC) > 0.5 and no more than 50 genes ranked by FDR, FDR=false discovery rate,
FC=fold change], resulting 49, 27, 50, 35, 31 and 1 marker genes used for enrichment analysis by AddModuleScore, respectively.
Because there was only 1 marker gene (Mcmé6) for CPM detected in our reproduced analysis from the de Strooper study (Sala Frigerio
et al., 2019), we included two additional CPM maker genes (Top2a and Mcm2) as exemplified in the original paper for enrichment
analysis. To evaluate homeostatic microglia gene enrichment (Figure 1E) for microglia annotation, we curated a list of 23 classical
homeostatic microglial genes based on multiple previous studies (Keren-Shaul et al., 2017; Sala Frigerio et al., 2019; Hammond
et al., 2019; Gosselin et al., 2017; Butovsky and Weiner, 2018) including Tmem119, Cx3cr1, P2ry12, P2ry13, Hexb, OIfmi3, Selplg,
Siglech, Csf1r, Cst3, Sparc, C1ga, C1gb, C1qc, Tmsb4x, Sall1, Fcrls, Gpr34, Spi1, Mafb, Maf, Mef2a, and Irf8.

We used upset plots (Conway et al., 2017) to visualize the intersections of marker gene sets of microglia subclusters (DAM, IRM,
Ccl3"9"/Ccl4™9") from each strain and the above corresponding mouse microglia states and human Mic1 population (Figures 4A, 5A,
6A, S6A, and S7A). The marker gene sets for each cluster from each strain used in the upset plots are selected using following the
criteria: log,(FC) > 0.25 and -log4o(FDR) > 18 for DAM (cluster 6 or 12); logs(FC) > 0.25 and -log4o(FDR) > 8 for IRM (cluster 7) and
Ccl3MM/Ccl4"9" (cluster 10). The lower stringency of -logo(FDR) for IRM and Cc/3M9"/Ccl4"9" microglia allowed enough numbers
of marker genes for comparison. A relaxed and varied stringency was applied to the above publicly available mouse and human data-
sets to include reasonable numbers of maker genes for comparison (due to the differences in data source): log,(FC) > 0.25 and
-log10(FDR) > 18 for DAM; log,(FC) > 0.25 and -log1o(FDR) > 6 for ARM and IRM; log,(FC) > 0.25 and top 50 genes ranked by
FDR for Aging OA2; logs(FC) > 0.25 and -log1o(FDR) > 1.3 for Aging OAS3; all marker genes listed for human Mic1; log,(FC) > 0.5
and -log1o(FDR) > 6 for human Micro0; top 50 positive marker genes for aged human microglia; -log;o(FDR) > 1.3 and upregulated
genes for M4 microglia module.

Pseudotime analysis

We performed pseudotime analysis for microglia using ‘destiny’ package (Angerer et al., 2016), a diffusion map based-pseudotime
inference. Because ‘destiny’ cannot generate a diffusion map for all 87,746 cells, we randomly sampled 1,000 cells from each group
(8000 cells for 8 groups). The first 30 principal components from these cells were processed through the ‘dpt’ function to generate a
diffusion map. The first dimension of the diffusion map was used as the pseudotime axis. A histogram displaying the distribution of
1000 microglia of each group along the pseudotime was plotted, with microglia cluster color coded.

Cell Reports 34, 108739, February 9, 2021 e4



http://bioconductor.org/books/release/OSCA/
http://bioconductor.org/books/release/OSCA/

¢? CellP’ress Cell Reports

OPEN ACCESS

Ingenuity pathway analysis (IPA)

The DE genes (Table S3) comparing wild-derived strains to B6 for homeostatic microglia (cluster H: 0-5 combined), DAM (cluster 6),
IRM (cluster 7) and Ccl3"9"/Ccl4"9" microglia (cluster 10) were subjected to Diseases and Functions (DF) and Regulatory Effect (RE)
analysis of IPA. The DE genes uploaded to IPA was defined as FDR < 0.05 and |FC| > 2 for homeostatic microglia, [FC| > 1 for DAM,
IRM, and Cc/3M9"/Ccl4"9" microglia. The higher FC threshold for homeostatic microglia was because there were too many DE genes
in homeostatic microglia when FC was set at 1 which was not computationally efficient for IPA. The top 20 (approximately) most sig-
nificant terms of DF from any of the comparisons (CAST versus B6, PWK versus B6, WSB versus B6) were visualized in a heatmap.

Human AD-relevant GWAS gene selection

The human AD-relevant GWAS genes were selected from two recent meta-analyses (Table 1 in Jansen et al., 2019 and Table S2 in De
Rojas et al., 2020). The GWAS genes from both tables were combined and were overlapped with the homologous mouse genes in
scRNA-seq data from this study. These GWAS genes were summarized in Table S6.

QUANTIFICATION AND STATISTICAL ANALYSIS

The proportion of microglia subtypes in each sample was calculated by dividing the number of cells in a given cluster by the total
number of cells from each sample. A two-way ANOVA with Tukey’s post hoc test (aov and TukeyHSD function in base R) was em-
ployed to assess the strain, genotype, and strain by genotype effect on the percent of cells per cluster. Significance for genotype
comparisons within strains were reported in each figure (Figure 2C). The complete comparisons with confidence interval and
adjusted p values (p.adj) are reported in Table S2. A one-way ANOVA with Tukey’s post hoc test (aov and TukeyHSD function in
base R) was employed to assess the enrichment z-score difference across clusters for a given gene set enrichment (Figure 1E).
A two-way ANOVA with Tukey’s post hoc test was employed to assess the strain, genotype, and strain by genotype effect on the
z-score for each cluster (Figures 3A, 4B, 5B, 6B, S6B, and S7B). Significance of the comparisons were reported in each figure.
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