54 research outputs found

    Protein Kinase C Activation Modulates α-Calmodulin Kinase II Binding to NR2A Subunit of N-Methyl-D-Aspartate Receptor Complex

    Get PDF
    The N-methyl-d-aspartate (NMDA) receptor subunits NR2 possess extended intracellular C-terminal domains by which they can directly interact with a large number of postsynaptic density (PSD) proteins involved in synaptic clustering and signaling. We have previously shown that PSD-associated alpha-calmodulin kinase II (alphaCaMKII) binds with high affinity to the C-terminal domain of the NR2A subunit. Here, we show that residues 1412-1419 of the cytosolic tail of NR2A are critical for alphaCaMKII binding, and we identify, by site directed mutagenesis, PKC-dependent phosphorylation of NR2A(Ser(1416)) as a key mechanism in inhibiting alphaCaMKII-binding and promoting dissociation of alphaCaMKII.NR2A complex. In addition, we show that stimulation of PKC activity in hippocampal slices either with phorbol esters or with the mGluRs specific agonist trans-1-amino-1,3- cyclopentanedicarboxylic acid (t-ACPD) decreases alphaCaMKII binding to NMDA receptor complex. Thus, our data provide clues on understanding the molecular basis of a direct cross-talk between alphaCaMKII and PKC pathways in the postsynaptic compartment

    Dopamine Transmission Imbalance in Neuroinflammation: Perspectives on Long-Term COVID-19

    Get PDF
    Dopamine (DA) is a key neurotransmitter in the basal ganglia, implicated in the control of movement and motivation. Alteration of DA levels is central in Parkinson's disease (PD), a common neurodegenerative disorder characterized by motor and non-motor manifestations and deposition of alpha-synuclein (alpha-syn) aggregates. Previous studies have hypothesized a link between PD and viral infections. Indeed, different cases of parkinsonism have been reported following COVID-19. However, whether SARS-CoV-2 may trigger a neurodegenerative process is still a matter of debate. Interestingly, evidence of brain inflammation has been described in postmortem samples of patients infected by SARS-CoV-2, which suggests immune-mediated mechanisms triggering the neurological sequelae. In this review, we discuss the role of proinflammatory molecules such as cytokines, chemokines, and oxygen reactive species in modulating DA homeostasis. Moreover, we review the existing literature on the possible mechanistic interplay between SARS-CoV-2-mediated neuroinflammation and nigrostriatal DAergic impairment, and the cross-talk with aberrant alpha-syn metabolism

    Distribution of interleukin-1 receptor complex at the synaptic membrane driven by interleukin-1β and NMDA stimulation

    Get PDF
    Interleukin-1β (IL-1β) is a pro-inflammatory cytokine that contributes to neuronal injury in various degenerative diseases, and is therefore a potential therapeutic target. It exerts its biological effect by activating the interleukin-1 receptor type I (IL-1RI) and recruiting a signalling core complex consisting of the myeloid differentiation primary response protein 88 (MyD88) and the IL-1R accessory protein (IL-1RAcP). This pathway has been clearly described in the peripheral immune system, but only scattered information is available concerning the molecular composition and distribution of its members in neuronal cells. The findings of this study show that IL-1RI and its accessory proteins MyD88 and IL-1RAcP are differently distributed in the hippocampus and in the subcellular compartments of primary hippocampal neurons. In particular, only IL-1RI is enriched at synaptic sites, where it co-localises with, and binds to the GluN2B subunit of NMDA receptors. Furthermore, treatment with NMDA increases IL-1RI interaction with NMDA receptors, as well as the surface expression and localization of IL-1RI at synaptic membranes. IL-1β also increases IL-1RI levels at synaptic sites, without affecting the total amount of the receptor in the plasma membrane. Our results reveal for the first time the existence of a dynamic and functional interaction between NMDA receptor and IL-1RI systems that could provide a molecular basis for IL-1β as a neuromodulator in physiological and pathological events relying on NMDA receptor activation

    Artificial neural networks allow the use of simultaneous measurements of Alzheimer Disease markers for early detection of the disease

    Get PDF
    BACKGROUND: Previous studies have shown that in platelets of mild Alzheimer Disease (AD) patients there are alterations of specific APP forms, paralleled by alteration in expression level of both ADAM 10 and BACE when compared to control subjects. Due to the poor linear relation among each key-element of beta-amyloid cascade and the target diagnosis, the use of systems able to afford non linear tasks, like artificial neural networks (ANNs), should allow a better discriminating capacity in comparison with classical statistics. OBJECTIVE: To evaluate the accuracy of ANNs in AD diagnosis. METHODS: 37 mild-AD patients and 25 control subjects were enrolled, and APP, ADM10 and BACE measures were performed. Fifteen different models of feed-forward and complex-recurrent ANNs (provided by Semeion Research Centre), based on different learning laws (back propagation, sine-net, bi-modal) were compared with the linear discriminant analysis (LDA). RESULTS: The best ANN model correctly identified mild AD patients in the 94% of cases and the control subjects in the 92%. The corresponding diagnostic performance obtained with LDA was 90% and 73%. CONCLUSION: This preliminary study suggests that the processing of biochemical tests related to beta-amyloid cascade with ANNs allows a very good discrimination of AD in early stages, higher than that obtainable with classical statistics methods

    Role of Glycogen Synthase Kinase-3β in APP Hyperphosphorylation Induced by NMDA Stimulation in Cortical Neurons

    Get PDF
    The phosphorylation of Amyloid Precursor Protein (APP) at Thr668 plays a key role in APP metabolism that is highly relevant to AD. The c-Jun-N-terminal kinase (JNK), glycogen synthase kinase-3β (GSK-3β) and cyclin-dependent kinase 5 (Cdk5) can all be responsible for this phosphorylation. These kinases are activated by excitotoxic stimuli fundamental hallmarks of AD. The exposure of cortical neurons to a high dose of NMDA (100 μM) for 30'-45' led to an increase of P-APP Thr668. During NMDA stimulation APP hyperphosphorylation has to be assigned to GSK-3β activity, since addition of L803-mts, a substrate competitive inhibitor of GSK-3β reduced APP phosphorylation induced by NMDA. On the contrary, inhibition of JNK and Cdk5 with D-JNKI1 and Roscovitine respectively did not prevent NMDA-induced P-APP increase. These data show a tight connection, in excitotoxic conditions, between APP metabolism and the GSK-3β signaling pathway

    CAP2 dimerization regulates cofilin in synaptic plasticity and Alzheimer's disease

    Get PDF
    Abstract Regulation of actin cytoskeleton dynamics in dendritic spines is crucial for learning and memory formation. Hence, defects in the actin cytoskeleton pathways are a biological trait of several brain diseases, including Alzheimer's Disease. Here, we describe a novel synaptic mechanism governed by the cyclase-associated protein 2 (CAP2), which is required for structural plasticity phenomena and completely disrupted in Alzheimer's Disease. We report that the formation of CAP2 dimers through its Cys32 is important for CAP2 binding to cofilin and for actin turnover. The Cys32-dependent CAP2 homodimerization and association to cofilin are triggered by long-term potentiation and are required for long-term potentiation-induced cofilin translocation into spines, spine remodelling and the potentiation of synaptic transmission. This mechanism is specifically affected in the hippocampus, but not in the superior frontal gyrus, of both Alzheimer's Disease patients and APP/PS1 mice, where CAP2 is down-regulated and CAP2 dimer synaptic levels are reduced. Notably, CAP2 levels in the cerebrospinal fluid are significantly increased in Alzheimer's Disease patients but not in subjects affected by frontotemporal dementia. In Alzheimer's Disease hippocampi, cofilin association to CAP2 dimer/monomer is altered and cofilin is aberrantly localized in spines. Taken together, these results provide novel insights into structural plasticity mechanisms that are defective in Alzheimer's Disease

    Lack of the Actin Capping Protein, Eps8, Affects NMDA-Type Glutamate Receptor Function and Composition

    Get PDF
    Actin-based remodeling underlines spine morphogenesis and plasticity and is crucially involved in the processes that constantly reshape the circuitry of the adult brain in response to external stimuli, leading to learning and memory formation and supporting cognitive functions. Hence spine morphology and synaptic strength are tightly linked and indeed abnormalities in spine number and morphology have been described in a number of neurological disorders such as autism spectrum disorders (ASDs), schizophrenia and intellectual disabilities. We have recently demonstrated that the actin regulating protein, Epidermal growth factor receptor pathway substrate 8 (Eps8), is essential for spine growth and long term potentiation. Indeed, mice lacking Eps8 display immature filopodia-like spines, which are unable to undergo potentiation, and are impaired in cognitive functions. Furthermore, reduced levels of Eps8 have been found in the brain of a cohort of patients affected by ASD compared to controls. Here we investigated whether the lack of Eps8, which is also part of the N-methyl-d-aspartate (NMDA) receptor complex, affects the functional maturation of the postsynaptic compartment. Our results demonstrate that Eps8 knock out mice (Eps8 KO) neurons display altered synaptic expression and subunit composition of NMDA receptors (i.e., increased GluN2B-, decreased GluN2A-containing receptors) and impaired GluN2B to GluN2A subunit shift. Indeed Eps8 KO neurons display increased content of GluN2B containing NMDA receptors both at the synaptic and extrasynaptic level. Furthermore, Eps8 KO neurons display an increased content of extra-synaptic GluN2B-containing receptors, suggesting that also the synaptic targeting of NMDA receptors is affected by the lack of Eps8. These data demonstrate that, besides regulation of spine morphogenesis, Eps8 also regulates the synaptic balance of NMDA receptors subunits GluN2A and GluN2B
    corecore