547 research outputs found
Growth and Decay in Life-Like Cellular Automata
We propose a four-way classification of two-dimensional semi-totalistic
cellular automata that is different than Wolfram's, based on two questions with
yes-or-no answers: do there exist patterns that eventually escape any finite
bounding box placed around them? And do there exist patterns that die out
completely? If both of these conditions are true, then a cellular automaton
rule is likely to support spaceships, small patterns that move and that form
the building blocks of many of the more complex patterns that are known for
Life. If one or both of these conditions is not true, then there may still be
phenomena of interest supported by the given cellular automaton rule, but we
will have to look harder for them. Although our classification is very crude,
we argue that it is more objective than Wolfram's (due to the greater ease of
determining a rigorous answer to these questions), more predictive (as we can
classify large groups of rules without observing them individually), and more
accurate in focusing attention on rules likely to support patterns with complex
behavior. We support these assertions by surveying a number of known cellular
automaton rules.Comment: 30 pages, 23 figure
Factors Affecting Pharmacokinetic Variability of Imatinib Mesylate (Gleevec, STI-571)
Imatinib mesylate, the first tyrosine kinase inhibitor to gain approval by the FDA,
remains as a pivotal example of rational drug design. Initially, imatinib was found to target
the bcr-abl fusion protein in CML and further targets have subsequently been identified,
including c-kit in GIST. Though a great number of studies have elucidated underlying
mechanisms to explain emerging resistance to this anti-cancer agent, many cases of
resistance remain unexplained. Furthermore, patients exhibit high interindividual
variability in imatinib pharmacokinetics, which may contribute to suboptimal drug
exposure and response
Localization dynamics in a binary two-dimensional cellular automaton: the Diffusion Rule
We study a two-dimensional cellular automaton (CA), called Diffusion Rule
(DR), which exhibits diffusion-like dynamics of propagating patterns. In
computational experiments we discover a wide range of mobile and stationary
localizations (gliders, oscillators, glider guns, puffer trains, etc), analyze
spatio-temporal dynamics of collisions between localizations, and discuss
possible applications in unconventional computing.Comment: Accepted to Journal of Cellular Automat
An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics
For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
Hot isostatically pressed zirconolite wasteforms for actinide immobilisation
In order to demonstrate the deployment of Hot Isostatic Pressing (HIP) for the immobilisation of Pu stocks and residues, a series of active and inactive zirconolite formulations have been processed and characterised. In this instance, Ce, U, and Th have been applied as chemical surrogates for Pu4+. A range of formulations targeting isovalent Zr4+ site substitution (i.e. to simulate CaZr1-xPuxTi2O7) have been processed by HIP and characterised by powder X-ray diffraction, and scanning electron microscopy, in order to determine surrogate partitioning between the host zirconolite phase, and accessory phases that may have formed during the HIP process
Production of gliders by collisions in Rule 110
We investigate the construction of all the periodic structures or “gliders” up to now known in the evolution space of the one-dimensional cellular automaton Rule 110. The production of these periodic structures is developed and presented by means of glider collisions. We provide a methodology based on the phases of each glider to establish the necessary conditions for controlling and displaying the collisions of gliders from the initial configuration
The clinical and molecular genetic approach to Duchenne and Becker muscular dystrophy: an updated protocol
Influence of transition metal charge compensation species on phase assemblage in zirconolite ceramics for Pu immobilisation
Immobilisation of Pu in a zirconolite matrix (CaZrTi2O7) is a viable pathway to disposition. A-site substitution, in which Pu4+ is accommodated into the Ca2+ site in zirconolite, coupled with sufficient trivalent M3+/Ti4+ substitution (where M3+ = Fe, Al, Cr), has been systematically evaluated using Ce4+ as a structural analogue for Pu4+. A broadly similar phase assemblage of zirconolite-2M and minor perovskite was observed when targeting low levels of Ce incorporation. As the targeted Ce fraction was elevated, secondary phase formation was influenced by choice of M3+ species. Co-incorporation of Ce/Fe resulted in the stabilisation of a minor Ce-containing perovskite phase at high wasteloading, whereas considerable phase segregation was observed for Cr3+ incorporation. The most favourable substitution approach appeared to be achieved with the use of Al3+, as no perovskite or free CeO2 was observed. However, high temperature treatments of Al containing specimens resulted in the formation of a secondary Ce-containing hibonite phase
Customer emotions in service failure and recovery encounters
Emotions play a significant role in the workplace, and considerable attention has been given to the study of employee emotions. Customers also play a central function in organizations, but much less is known about customer emotions. This chapter reviews the growing literature on customer emotions in employee–customer interfaces with a focus on service failure and recovery encounters, where emotions are heightened. It highlights emerging themes and key findings, addresses the measurement, modeling, and management of customer emotions, and identifies future research streams. Attention is given to emotional contagion, relationships between affective and cognitive processes, customer anger, customer rage, and individual differences
Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET
The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR
- …
