2,110 research outputs found
Total Pancreatectomy with Islet Autologous Transplantation: The Cure for Chronic Pancreatitis?
Chronic pancreatitis (CP) is a debilitating disease that leads to varying degrees of pancreatic endocrine and exocrine dysfunction. One of the most difficult symptoms of CP is severe abdominal pain, which is often challenging to control with available analgesics and therapies. In the last decade, total pancreatectomy with autologous islet cell transplantation has emerged as a promising treatment for the refractory pain of CP and is currently performed at approximately a dozen centers in the United States. While total pancreatectomy is not a new procedure, the endocrine function-preserving autologous islet cell isolation and re-implantation have made the prospect of total pancreatectomy more acceptable to patients and clinicians. This review will focus on the current status of total pancreatectomy with autologous islet cell transplant including patient selection, technical considerations, and outcomes. As the procedure is performed at an increasing number of centers, this review will highlight opportunities for quality improvement and outcome optimization
Recommended from our members
Extinction Limits of Nonadiabatic, Catalyst-Assisted Flames in Stagnation-Point Flow
An idealized geometry corresponding to a premixed flame in stagnation-point flow is used to investigate the effects of catalysis on extending the extinction limits of on adiabatic stretched flames. Specifically, a surface catalytic reaction is assumed to occur on the stagnation plane, thereby augmenting combustion in the bulk gas with a exothermic surface reaction characterized by a reduced activation energy. Assuming the activation energies remain large, an asymptotic analysis of the resulting flame structure yields a formula for the extinction limit as a function of various parameters. In particular, it is demonstrated that the presence of a surface catalyst can extend the burning regime, thus counterbalancing the effects of heat loss and flame stretch that tend to shrink it. The analysis is relevant to small-volume combustors, where the increased surface-to-volume ratio can lead to extinction of the nonadiabatic flame in the absence of a catalyst
Ultra-high field MRI for evaluation of rectal cancer stroma ex vivo : correlation with histopathology
Purpose or Objective: Current clinical MRI techniques in rectal cancer are
unable to differentiate Stage T1 from T2 (invasion of muscularis propria) tumours, and the differentiation of tumour from desmoplastic reaction or fibrous tissue remains a challenge1. Diffusion tensor imaging (DTI) MRI
has potential to assess collagen structure and organisation (anisotropy). To our knowledge, there have been no MRI studies assessing DTI MRI for rectal cancer ex vivo. The purpose of this study was to examine DTI MRI derived biomarkers of rectal cancer stromal heterogeneity at high field strength ex vivo
Genomic Characterization of Patient-Derived Xenograft Models Established from Fine Needle Aspirate Biopsies of a Primary Pancreatic Ductal Adenocarcinoma and from Patient-Matched Metastatic Sites
N-of-1 trials target actionable mutations, yet such approaches do not test genomically-informed therapies in patient tumor models prior to patient treatment. To address this, we developed patient-derived xenograft (PDX) models from fine needle aspiration (FNA) biopsies (FNA-PDX) obtained from primary pancreatic ductal adenocarcinoma (PDAC) at the time of diagnosis. Here, we characterize PDX models established from one primary and two metastatic sites of one patient. We identified an activating KRAS G12R mutation among other mutations in these models. In explant cells derived from these PDX tumor models with a KRAS G12R mutation, treatment with inhibitors of CDKs (including CDK9) reduced phosphorylation of a marker of CDK9 activity (phospho-RNAPII CTD Ser2/5) and reduced viability/growth of explant cells derived from PDAC PDX models. Similarly, a CDK inhibitor reduced phospho-RNAPII CTD Ser2/5, increased apoptosis, and inhibited tumor growth in FNA-PDX and patient-matched metastatic-PDX models. In summary, PDX models can be constructed from FNA biopsies of PDAC which in turn can enable genomic characterization and identification of potential therapies
Vibrational and vibrational-torsional interactions in the 0â600 cm-1 region of the S1 â S0 spectrum of p-xylene investigated with resonance-enhanced multiphoton ionization (REMPI) and zero-kinetic-energy (ZEKE) spectroscopy
We assign the 0â600 cm-1 region of the S1 â S0 transition in p-xylene using resonance-enhanced multiphoton ionization (REMPI) and zero-kinetic-energy (ZEKE) spectroscopy. In the 0â300 cm-1 range, as well as the intense origin band there are a number of torsional and vibration-torsion (vibtor) features. The latter are discussed in more detail in an accompanying paper [Gardner et al. J. Chem. Phys. XXX, xxxxxx (2016)]. Here we focus on the origin and the 300â650 cm-1 region, where vibrational bands and some vibtor activity is observed. From the origin ZEKE spectrum we derive the ionization energy of p-xylene as 68200 ± 5 cm-1. The assignment of the REMPI spectrum is based on the activity observed in the ZEKE spectra coupled with knowledge of the vibrational wavenumbers obtained from quantum chemical calculations. We assign several isolated vibrations, and a complex Fermi resonance that is found to comprise contributions from both vibrations and vibtor levels, and we examine this via a two-dimensional ZEKE (2D-ZEKE) spectrum. A number of the vibrational features in the REMPI and ZEKE spectra of p-xylene that have been reported previously are reassigned and now largely consist of totally-symmetric contributions. We briefly discuss the appearance of non-Franck-Condon allowed transitions. Finally, we find remarkably similar spectral activity to that in the related disubstituted benzenes, para-difluorobenzene and para-fluorotoluene
Quality of Life in Chronic Pancreatitis is Determined by Constant Pain, Disability/Unemployment, Current Smoking, and Associated Co-Morbidities
OBJECTIVES: Chronic pancreatitis (CP) has a profound independent effect on quality of life (QOL). Our aim was to identify factors that impact the QOL in CP patients. METHODS: We used data on 1,024 CP patients enrolled in the three NAPS2 studies. Information on demographics, risk factors, co-morbidities, disease phenotype, and treatments was obtained from responses to structured questionnaires. Physical and mental component summary (PCS and MCS, respectively) scores generated using responses to the Short Form-12 (SF-12) survey were used to assess QOL at enrollment. Multivariable linear regression models determined independent predictors of QOL. RESULTS: Mean PCS and MCS scores were 36.7+/-11.7 and 42.4+/-12.2, respectively. Significant (P \u3c 0.05) negative impact on PCS scores in multivariable analyses was noted owing to constant mild-moderate pain with episodes of severe pain or constant severe pain (10 points), constant mild-moderate pain (5.2), pain-related disability/unemployment (5.1), current smoking (2.9 points), and medical co-morbidities. Significant (P \u3c 0.05) negative impact on MCS scores was related to constant pain irrespective of severity (6.8-6.9 points), current smoking (3.9 points), and pain-related disability/unemployment (2.4 points). In women, disability/unemployment resulted in an additional 3.7 point reduction in MCS score. Final multivariable models explained 27% and 18% of the variance in PCS and MCS scores, respectively. Etiology, disease duration, pancreatic morphology, diabetes, exocrine insufficiency, and prior endotherapy/pancreatic surgery had no significant independent effect on QOL. CONCLUSIONS: Constant pain, pain-related disability/unemployment, current smoking, and concurrent co-morbidities significantly affect the QOL in CP. Further research is needed to identify factors impacting QOL not explained by our analyses
EUS pancreatic function testing and dynamic pancreatic duct evaluation for the diagnosis of exocrine pancreatic insufficiency and chronic pancreatitis
Background and Aims
EUS and endoscopic pancreatic function tests (ePFTs) may be used to diagnose minimal- change chronic pancreatitis (MCCP). The impact of evaluation for exocrine pancreatic insufficiency (EPI) and real-time assessment of EUS changes after intravenous secretin on the clinical diagnosis of MCCP is unknown.
Methods
Patients with suspected MCCP underwent baseline EUS assessment of the pancreatic parenchyma and measurement of the main pancreatic duct (B-MPD) in the head, body, and tail. Human secretin 0.2 ÎŒg/kg IV was given followed 4, 8, and 12 minutes later by repeat MPD (S-MPD) measurements. Duodenal samples at 15, 30, and 45 minutes were aspirated for bicarbonate concentration. Endoscopists rated the percent clinical likelihood of CP: (1) before secretin; (2) after secretin but before aspiration; and (3) after bicarbonate results.
Results
145 consecutive patients (mean age 44±13 years; 98F) were diagnosed with EPI (n=32; 22%). S-MPD/B-MPD ratios in the tail 4 and 8 minutes after secretin were higher in the group with normal exocrine function. Ratios at other times, locations and duodenal fluid volumes were similar between the 2 groups. A statistically significant change in the median percent likelihood of CP was noted after secretin in all groups. The sensitivity and specificity of EPI for the EUS diagnosis of CP (â„5 criteria) were 23.4% (95% CI, 12.3-38.0) and 78.6% (95% CI, 69.1-86.2), respectively.
Conclusion
Real-time EUS findings and ePFTs have a significant impact on the clinical assessment of MCCP. The diagnosis of EPI shows poor correlation with the EUS diagnosis of MCCP
Mechanisms of CFTR Functional Variants That Impair Regulated Bicarbonate Permeation and Increase Risk for Pancreatitis but Not for Cystic Fibrosis
CFTR is a dynamically regulated anion channel. Intracellular WNK1-SPAK activation causes CFTR to change permeability and conductance characteristics from a chloride-preferring to bicarbonate-preferring channel through unknown mechanisms. Two severe CFTR mutations (CFTRsev) cause complete loss of CFTR function and result in cystic fibrosis (CF), a severe genetic disorder affecting sweat glands, nasal sinuses, lungs, pancreas, liver, intestines, and male reproductive system. We hypothesize that those CFTR mutations that disrupt the WNK1-SPAK activation mechanisms cause a selective, bicarbonate defect in channel function (CFTRBD) affecting organs that utilize CFTR for bicarbonate secretion (e.g. the pancreas, nasal sinus, vas deferens) but do not cause typical CF. To understand the structural and functional requirements of the CFTR bicarbonate-preferring channel, we (a) screened 984 well-phenotyped pancreatitis cases for candidate CFTRBD mutations from among 81 previously described CFTR variants; (b) conducted electrophysiology studies on clones of variants found in pancreatitis but not CF; (c) computationally constructed a new, complete structural model of CFTR for molecular dynamics simulation of wild-type and mutant variants; and (d) tested the newly defined CFTRBD variants for disease in non-pancreas organs utilizing CFTR for bicarbonate secretion. Nine variants (CFTR R74Q, R75Q, R117H, R170H, L967S, L997F, D1152H, S1235R, and D1270N) not associated with typical CF were associated with pancreatitis (OR 1.5, pâ=â0.002). Clones expressed in HEK 293T cells had normal chloride but not bicarbonate permeability and conductance with WNK1-SPAK activation. Molecular dynamics simulations suggest physical restriction of the CFTR channel and altered dynamic channel regulation. Comparing pancreatitis patients and controls, CFTRBD increased risk for rhinosinusitis (OR 2.3, p<0.005) and male infertility (OR 395, p<<0.0001). WNK1-SPAK pathway-activated increases in CFTR bicarbonate permeability are altered by CFTRBD variants through multiple mechanisms. CFTRBD variants are associated with clinically significant disorders of the pancreas, sinuses, and male reproductive system.Fil: LaRusch, Jessica. Univeristy of Pittsburgh. School of Medicine; Estados UnidosFil: Jung, Jinsei. Yonsei University College of Medicine; Corea del SurFil: General, Ignacio. University of Pittsburgh; Estados Unidos. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; ArgentinaFil: Lewis, Michele D.. Mayo Clinic. Division of Gastroenterology and Hepatology; Estados UnidosFil: Park, Hyun Woo. Yonsei University College of Medicine; Corea del SurFil: Brand, Randall E.. Univeristy of Pittsburgh. School of Medicine; Estados UnidosFil: Gelrud, Andres. Univeristy of Pittsburgh. School of Medicine; Estados UnidosFil: Anderson, Michelle A.. University of Michigan; Estados UnidosFil: Banks, Peter A.. Brigham and Womenâs Hospital. Division of Gastroenterology; Estados UnidosFil: Conwell, Darwin. Brigham and Womenâs Hospital. Division of Gastroenterology; Estados UnidosFil: Lawrence, Christopher. Medical University of South Carolina; Estados UnidosFil: Romagnuolo, Joseph. Medical University of South Carolina; Estados UnidosFil: Baillie, John. University of Duke; Estados UnidosFil: Alkaade, Samer. St. Louis University. School of Medicine; Estados UnidosFil: Cote, Gregory. Indiana University; Estados UnidosFil: Gardner, Timothy B.. Dartmouth-Hitchcock Medical Center; Estados UnidosFil: Amann, Stephen T.. North Mississippi Medical Center; Estados UnidosFil: Slivka, Adam. Univeristy of Pittsburgh. School of Medicine; Estados UnidosFil: Sandhu, Bimaljit. Virginia Commonwealth University Medical Center; Estados UnidosFil: Aloe, Amy. Univeristy of Pittsburgh. School of Medicine; Estados UnidosFil: Kienholz, Michelle L.. Univeristy of Pittsburgh. School of Medicine; Estados UnidosFil: Yadav, Dhiraj. Univeristy of Pittsburgh. School of Medicine; Estados UnidosFil: Barmada, M. Michael. Univeristy of Pittsburgh. School of Medicine; Estados UnidosFil: Bahar, Ivet. Univeristy of Pittsburgh. School of Medicine; Estados UnidosFil: Lee, Min Goo. Yonsei University College of Medicine; Corea del SurFil: Whitcomb, David C.. Univeristy of Pittsburgh. School of Medicine; Estados UnidosFil: North American Pancreatitis Study Group. No especifica
Theoretical study of M+ RG2: (M+= Ca, Sr, Ba and Ra; RG= HeâRn)
Ab initio calculations were employed to investigate M+ RG2 species, where M+ = Ca, Sr, Ba and Ra and RG= HeâRn. Geometries have been optimized, and cuts through the potential energy surfaces containing each global minimum have been calculated at the MP2 level of theory, employing triple-ζ quality basis sets. The interaction energies for these complexes were calculated employing the RCCSD(T) level of theory with quadruple-ζ quality basis sets. Trends in binding energies, De, equilibrium bond lengths, Re, and bond angles are discussed and rationalized by analyzing the electronic density. Mulliken, natural population, and atoms-in-molecules (AIM) population analyses are presented. It is found that some of these complexes involving the heavier Group 2 metals are bent whereas others are linear, deviating from observations for the corresponding Be and Mg metal-containing complexes, which have all previously been found to be bent. The results are discussed in terms of orbital hybridization and the different types of interaction present in these species
- âŠ