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ABSTRACT

An idealized geometry corresponding to a premixed flame in stagnation-point flow is used

to investigate the effects of catalysis on extending the extinction limits of nonadiabatic stretched

flames. Specifically, a surface catalytic reaction is assumed to occur on the stagnation plane,

thereby augmenting combustion in the bulk gas with an exothermic surface reaction characterized

by a reduced activation energy. Assuming the activation energies remain large, an asymptotic

analysis of the resulting flame structure yields a formula for the extinction limit as a function

of various parameters. In particular, it is demonstrated that the presence of a surface catalyst

can extend the burning regime, thus counterbalancing the effects of heat loss and flame stretch

that tend to shrink it. The analysis is relevant to small-volume combustors, where the increased

surface-to-volume ratio can lead to extinction of the nonadiabatic flame in the absence of a catalyst.
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EXTINCTION LIMITS OF NONADIABATIC, CATALYST-ASSISTED

FLAMES IN STAGNATION-POINT FLOW

1. Introduction

Because combustion is essentially an Arrhenius process, premixed flames generally can only

exist within certain parameter ranges, or extinction limits, that correspond to a rate of heat

production that is sufficient to sustain the reaction in a given flow geometry. Nonetheless, it

is frequently desirable to extend these limits, often for the purpose of increasing fuel efficiency

and/or reducing the rate of formation of pollutant species. Another emerging motivation is to

allow combustion to be sustained in relatively small volumes, which are characterized by larger

surface-to-volume ratios, that would otherwise lead to extinguishing levels of heat loss. Surface

catalysts are widely used to achieve such enhancements with respect to efficiency and pollutant

formation, and we wish to now consider the role catalysts might play with respect to nonadiabatic

flames.

The model problem to be studied is illustrated in Figure 1, which depicts a nonadiabatic

stretched flame in stagnation-point flow against a catalytic surface. This geometry is similar to

that considered by others (cf. Law and Sivashinsky [1]; Giovangigli and Candel [2]; Warnatz et al.

[3]), who have analyzed such a problem both analytically and numerically in the absence of heat

losses. In addition to previous experimental investigations (cf. Law et al. [4]; Ikeda et al. [5]),

this geometry is also suggested by more recent experiments (Gardner et al. [6]) on small-volume

combustors. In the latter application, such a combustor (nominally 2500µ × 2500µ × 400µ) is fed

by an inlet tube that blows against a catalytic surface (platinum mounted on a titanium/silicon

wafer) and is vented by one or more outlet ports on either the opposite face (shortest dimension)

or sides. In those experiments, it was demonstrated, following ignition by the heated catalytic

surface, that a nearly flat flame could be sustained under the inlet port, close to the catalytic

surface, without further heat addition. In the absence of the catalyst, the level of heat loss was

apparently sufficient to extinguish the flame.

The purpose of the present work is to present an analysis of the model depicted in Figure

1 that takes into account the effects of nonadiabaticity. Specifically, solution-response curves,

parameterized by a heat-loss coefficient and other parameters, are obtained that illustrate the

extension of extinction limits arising from the additional catalytic surface reaction. The latter is

assumed to proceed exothermically at reduced activation energy relative to the reaction in the bulk

gas, and enables the flame to be sustained at higher rates of heat loss than would otherwise be the

case.
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2. Model Formulation

Referring to Figure 1, the stagnation-point flow is assumed to be cylindrically symmetric,

occupying the domain 0 < z̃ < ∞, 0 < r̃ < ∞, where z̃ and r̃ are the axial and radial coordinates,

respectively, and the tildes denote dimensional quantities. The catalytic surface, assumed adiabatic,

thus corresponds to the plane z̃ = 0, and the effects of heat loss arising from the remaining finite

dimensions of an actual combustor are represented in a volumetric fashion. Although one may

consider the portion of the flow field of interest to be governed by a boundary-layer formulation

(cf. [1]), it turns out that qualitatively identical results are obtained (Section 4) if potential flow

and weak thermal expansion are assumed. Accordingly, we make these assumptions for simplicity,

resulting in the specified flow field (ũ, w̃) = ∇̃φ̃, where ũ and w̃ are the radial and axial velocities,

respectively, the velocity potential φ̃ = −ã(z̃2 − r̃2/2), and ã is the strain rate. Equivalently,

ũ(r̃, z̃) = −1
r̃

∂ψ̃

∂z̃
= ãr̃ , w̃(r̃, z̃) =

1
r̃

∂ψ̃

∂r̃
= −2ãz̃ , ψ̃ = −ãr̃2z̃ , (1)

where ψ̃(r̃, z̃) is the stream function.

Given this flow field, the conservation equations for the temperature T̃ and mass fraction Y

of the deficient component of the mixture (i.e., the mass fraction of fuel if the initial composition

is lean, and the mass fraction of oxidizer if it is rich) are given in the region 0 < z̃ < ∞ by

∂T̃

∂t̃
+ ũ

∂T̃

∂r̃
+ w̃

∂T̃

∂z̃
= λ̃

[
1
r̃

∂

∂r̃

(
r̃
∂T̃

∂r̃

)
+

1
r2

∂2T̃

∂ϑ2
+
∂2T̃

∂z̃2

]
+ Q̃ÃgY

ne−Ẽg/R̃◦T̃ − H̃(T̃ − T̃u) , (2)

∂Y

∂t̃
+ ũ

∂Y

∂r̃
+ w̃

∂Y

∂z̃
= λ̃m

[
1
r̃

∂

∂r̃

(
r̃
∂Y

∂r̃

)
+

1
r2

∂2Y

∂ϑ2
+
∂2Y

∂z̃2

]
− ÃgY

ne−Ẽg/R̃◦T̃ , (3)

where ϑ is the angular coordinate, λ̃ and λ̃m are the thermal and mass diffusivities, respectively,

Q̃ is the heat release (in units of temperature), Ãg and n are the rate coefficient and reaction

order, Ẽg is the activation energy of the gas-phase reaction, R̃◦ is the gas constant, and H̃ is the

heat-loss rate coefficient. In writing the last term of Eq. (2), we have, for simplicity, represented

heat losses in a standard volumetric/radiative fashion; an approximation for H̃ may be obtained

from a knowledge of the corresponding surface heat-transfer coefficients and the surface-to-volume

ratio of the combustor. The problem is closed by specifying the boundary conditions

T̃ → T̃u , Y → Yu as z → ∞ , (4)

λ̃
∂T̃

∂z̃

∣∣∣∣
z=0

= −Q̃ÃsY
n
s e−Ẽs/R̃0T̃s , λ̃m

∂Y

∂z̃

∣∣∣∣
z=0

= ÃsY
n
s e−Ẽs/R̃0T̃s , (5)

where Ys and T̃s represent values at z = 0 that are to be determined (it is assumed that the catalytic

surface is highly conductive, so that Ts and Ys are independent of r). The boundary conditions
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(5) thus model the catalyst as an exothermic reaction at the surface z = 0, distinguished from the

reaction rate in the bulk gas by a surface rate coefficient Ãs and a different activation energy Ẽs.

It is assumed here that the catalytic surface is adiabatic, and thus all heat produced is conducted

normal to the surface into the bulk gas (there is no convective contribution since w̃ = 0 at the

surface). The catalytic effect itself is modeled by assuming that Ẽs < Ẽg, thus allowing the surface

reaction to take place at lower temperatures and consequently raising the temperature of the

surrounding region such that the gas-phase reaction, if relatively weak in the absence of catalysis,

is further encouraged.

As a basic solution of the problem just described, we seek steady, axisymmetric solutions that

are functions of the axial coordinate z only, corresponding to the approximately planar flames

that are typically observed in stagnation-point and counterflow configurations. We also introduce

nondimensional quantities according to

z =
√

ã

λ̃
z̃ , y =

Y

Yu
, T =

T̃

T̃u

, Le =
λ̃

λ̃m

,

Q =
Q̃

T̃u

, H =
H̃

ã
, Ng,s =

Ẽg,s

R̃◦T̃u

, ν =
Ẽs

Ẽg

.

(6)

In addition, we introduce the (unknown) characteristic flame temperature T̃f and the corresponding

temperature “eigenvalue” Λs, where Λs, Λg and their ratio τ are defined as

Λs =
ÃsY

n
u√
ãλ̃

e−Ẽs/R̃◦T̃f , Λg =
ÃgY

n
u

ã
e−Ẽg/R̃◦T̃f , τ =

Λs

Λg
=

√
ã

λ̃

Ãs

Ãg

e(Ẽg−Ẽs)/R̃◦T̃f . (7)

Thus, in terms of these nondimensional variables and parameters, steady, planar solutions of the

problem are governed by

−2z
dT

dz
=

d2T

dz2
+QΛgy

n e(Ng/Tf )(1−Tf /T ) −H(T − 1) , 0 < z < ∞ , (8)

−2z
dy

dz
= Le−1 d

2y

dz2
− Λgy

n e(Ng/Tf )(1−Tf /T ) , 0 < z < ∞ , (9)

subject to

T → 1 , Y → 1 as z → ∞ , (10)

dT

dz

∣∣∣∣
z=0

= −QΛsy
n
s e

(Ns/Tf )(1−Tf /Ts) , Le−1 dy

dz

∣∣∣∣
z=0

= Λsy
n
s e

(Ns/Tf )(1−Tf /Ts) . (11)

In what follows, we exploit the largeness of the activation-energy parameters Ng and Ns to obtain

an asymptotic solution of Eqs. (8) – (11).
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3. Asymptotic Analysis of the Model

Although we implicitly assume that Ns < Ng, which implies that the catalytic surface reaction

can be sustained at lower temperatures than the distributed gas-phase reaction, it is reasonably

assumed that both nondimensional activation energies are relatively large. Thus, their ratio ν,

though less than unity, is still an O(1) quantity and, consequently, the bulk-gas and surface reac-

tions will take place in close proximity to one another. In particular, since the catalytic surface is

adiabatic and the surface reaction is exothermic, the peak temperature will be Ts and, at least near

extinction, the thin distributed reaction zone will tend to lie adjacent to the catalytic surface.1 In

the outer region away from the surface, temperatures are sufficiently low that the reaction terms

in Eqs. (8) and (9) become exponentially small.

In what follows, it will prove useful to introduce the large parameter β defined by

β = (Ng/Tf )(1 − 1/Tf ) , (12)

which is proportional to the nondimensional activation energy. Based on previous asymptotic

studies of nonadiabatic combustion problems (cf. Matkowsky and Olagunju [7]; Booty et al. [8];

Kaper et al. [9]; Margolis and Johnston [10]), it is clear that extinction then occurs for O(β−1)

values of the volumetric heat-loss coefficient H. Accordingly, we define the scaled parameter h,

and, for further convenience, introduce a normalized temperature Θ and heat release q as

H = β−1h , Θ =
T − 1
Tf − 1

=
T̃ − T̃u

T̃f − T̃u

, q =
Q

Tf − 1
=

Q̃

T̃f − T̃u

. (13)

In terms of these quantities, Eqs. (8) – (11) are expressed in a form suitable for asymptotic analysis

as

−2z
dΘ
dz

=
d2Θ
dz2

+ qΛgy
n eβ(Θ−1)/[T−1

f
+(1−T−1

f
)Θ] − β−1hΘ , 0 < z < ∞ , (14)

−2z
dy

dz
= Le−1 d

2y

dz2
− Λgy

n eβ(Θ−1)/[T−1
f

+(1−T−1
f

)Θ] , 0 < z < ∞ , (15)

subject to

Θ → 0 , Y → 1 as z → ∞ , (16)

dΘ
dz

∣∣∣∣
z=0

= −qτΛgy
n
s e

νβ(Θs−1)/[T−1
f

+(1−T−1
f

)Θs] ,

Le−1 dy

dz

∣∣∣∣
z=0

= τΛgy
n
s e

νβ(Θs−1)/[T−1
f

+(1−T−1
f

)Θs] .

(17)

1Based on the combined effects of the strained flow field and Lewis number on the leading-order flame temperature

[see Eq. (31) below], it has been heuristically argued [1] that extinction will occur in this near-surface burning

regime, rather than at O(1) flame-standoff distances, when Le < 1. However, the more complete analysis in [2]

suggests more generally that the flame will lie adjacent to the stagnation surface prior to extinction either when the

Lewis number is less than a critical value that is somewhat greater than unity, or when the activation-energy ratio

ν < 1/2, corresponding to a sufficiently low surface activation energy and hence a more active catalytic reaction.
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Considering first the outer region, where z and 1−Θ are both O(1), we see that the reaction

terms are exponentially negligible. The solution in this region, denoted by a superscript “(o)”, is

thus governed by the reactionless equations

−2z
dΘ(o)

dz
=

d2Θ(o)

dz2
− β−1hΘ(o) , −2z

dy(o)

dz
= Le−1 d

2y(o)

dz2
, (18)

subject to the outer boundary conditions (16) and appropriate matching conditions with the inner

solution considered below. The appearance of the small parameter β−1 in the first of Eqs. (18)

then suggests that the outer solutions be sought sought in the expanded form

Θ(o) ∼ Θ0(z) + β−1Θ1(z) + · · · , y(o) ∼ y0(z) + β−1y1(z) + · · · . (19)

The leading-order solutions for Θ0 and y0 are then determined by the homogeneous version of Eqs.

(18) and the boundary conditions (16) as

Θ0(z) = A0 erfc(z) , y0(z) = 1 +B0 erfc
(√

Le z
)
, (20)

where the constants of integration A0 and B0 are to be determined from the matching conditions.

At higher orders, the equations for yi, i ≥ 1, remain homogeneous, and the solutions, subject to

yi = 0 at z = ∞, are thus given by

yi(z) = Bi erfc
(√

Le z
)
, i ≥ 1 . (21)

However, because y0(z) is an exact solution of the second of Eqs. (20), we may, without loss of

generality, set Bi, and hence yi, to zero for i ≥ 1. On the other hand, the inhomogeneous equation

determining the next-order solution Θ1 is given by

−2z
dΘ1

dz
=

d2Θ1

dz2
− hΘ0 , (22)

subject to Θ1 = 0 at z = ∞. Substituting the expression in Eq. (20) for Θ0, the solution for Θ1

can be obtained directly through successive integrations as

Θ1 = A1 erfc(z) − hA0

∫ ∞

z

e−ẑ2
dẑ

∫ ẑ

0

ez̄2
erfc(z̄) dz̄ , (23)

where A1 is another as-yet-undetermined constant of integration. Reversing the order of integration

in the double integral of Eq. (23) and dividing the integration domain into two parts, this result

can be rewritten as

Θ1(z) = A1 erfc(z) − hA0

[∫ ∞

z

ez̄2
erfc(z̄) dz̄

∫ ∞

z̄

e−ẑ2
dẑ +

∫ z

0

ez̄2
erfc(z̄) dz̄

∫ ∞

z

e−ẑ2
dẑ

]

= A1 erfc(z) − hA0

√
π

2

[∫ ∞

z

ez̄2
erfc2(z̄) dz̄ + erfc(z)

∫ z

0

ez̄2
erfc(z̄) dz̄

]
,

(24)
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which consists of only single integrals. The final result (24) is recognized as the variation-of-

parameters form of the solution.

The outer solutions y(o)(z;Le) = y0(z) and Θ(o)(z,H) ≈ Θ0(z) + β−1Θ1(z), along with the

leading- and first-order temperature profiles Θ0(z) and Θ1(z), are exhibited in Figure 2. In plotting

these solutions, we have used the fact that β−1h = H and the results, obtained from the analysis

of the inner problem given below, that A0 = −B0 = 1 and A1 = 0.

Having thus constructed two terms of the outer solution, we now consider the inner problem

by introducing the stretched coordinate η = βz. In this thin region, which lies adjacent to the

catalytic surface and in which chemical reaction becomes appreciable, Θ is within O(β−1) of unity,

as is Θs. We thus seek inner solutions, denoted by a superscript “(i)”, in the expanded form

Θ(i) ∼ 1 + β−1θ1 + ε2θ2 + · · · , y(i) ∼ β−1ζ1 + β−2ζ2 + · · · , (25)

which implies Θs ∼ 1 + β−1θs + · · · , with the surface-temperature coefficient θs to be determined.

A leading-order balance of reactive and diffusive terms then implies the additional scalings

Λg = β(n+1)λ̂ , τ = β−1τ̂ . (26)

Substituting the inner expansions/scalings (25) and (26) into Eqs. (14), (15) and (17), the

leading-order problem in the region η > 0 is determined as

0 =
d2θ1
dη2

+ qλ̂ζn
1 e

θ1 , 0 = Le−1 d
2ζ1
dη2

− λ̂ζn
1 e

θ1 , (27)

subject to the boundary and matching conditions

dθ1
dη

∣∣∣∣
η=0

= −qτ̂ λ̂ζn
s e

νθs , Le−1 dζ1
dη

∣∣∣∣
η=0

= τ̂ λ̂ζn
s e

νθs , (28)

0 = y0

∣∣
z=0

, 1 = Θ0

∣∣
z=0

, θ1 ∼ Θ1

∣∣
z=0

+ η
dΘ0

dz

∣∣∣∣
z=0

, ζ1 ∼ η
dy0

dz

∣∣∣∣
z=0

as η → ∞ . (29)

We note that the first two of Eqs. (29) are actually the zeroth order matching conditions which

determine the constants A0 and B0 in Eqs. (20) as A0 = 1, B0 = −1.

The solution of Eqs. (27) – (29) proceeds as follows. Adding the first and q times the second

of Eqs. (27) gives, after integrating once and evaluating the constant of integration at η = 0

according to Eqs. (28), the result

dθ1
dη

+ Le−1q
dζ1
dη

= 0 . (30)

Substituting the matching conditions (29) into this result thus requires, according to Eq. (20) with

the above values of A0 and B0, that q
/√

Le = 1. Thus, from the definition of q in Eq. (13),

Tf = 1 +Q/
√
Le , (31)
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which determines the reference flame temperature Tf , and hence Λs and Λg. We observe that

unlike freely-propagating flames, the flame temperature of the stagnation-point flame depends on

Lewis number, and is equal to the classical adiabatic flame temperature Tf = 1 + Q only for

Le = 1. The fact that Tf varies with Lewis number stems from the fact that the flame is stretched;

i.e., the streamlines are divergent with respect to the flame normal. In particular, thermal and

mass diffusion occur in the normal direction with respect to the flame, where thermal diffusion

conducts heat away from the reaction zone into the preheat region and mass diffusion supplies

chemical energy to the reaction zone from this region. Consequently, an increase (decrease) in

Lewis number results in a net enthalpy loss (gain) to the flame with respect to the diverging flow,

and hence a decrease (increase) in the flame temperature. However, it turns out that a lower

leading-order flame temperature results in a greater sensitivity to surface catalysis since there is

less conversion of the reactants in the bulk gas. Indeed, as indicated by Eq. (33) below, a larger

Lewis number results in a greater reactant concentration at the catalytic surface, and hence the

existence of a catalytic surface reaction will have a greater influence on the solution response in

that case.

A second integration of Eq. (30) gives, again using the matching conditions (29), the relation

θ1 + Le−1qζ1 = A1 − hγ
√
π
/
2 , γ =

∫ ∞

0

ez̄2
erfc2(z̄) dz̄ .= 0.391066 , (32)

where we have used the fact that A0 = 1. Application of the matching conditions at the next

order in the inner analysis, described in the Appendix, then determines that A1 = 0, thus giving

a determinate relationship between θ1 and ζ1. Consequently, from the result above Eq. (31),

ζ1 =
√
Le

(
− hγ

√
π/2 − θ

)
, (33)

and substituting this expression for ζ1 into the first of Eqs. (27), an equation for θ1 alone is

obtained as

0 =
d2θ1
dη2

+ λ̂Le(n+1)/2(−θ1 − c)neθ1 , c = hγ
√
π
/
2 . (34)

This in turn may be integrated once to give

1
2

(
dθ1
dη

)2

+ λ̂Le(n+1)/2

∫ θ1

−∞
(−θ̄1 − c)neθ̄1 dθ̄1 =

2
π
, (35)

where the constant of integration was obtained from the matching condition (29) for θ1. At this

point, evaluation Eq. (34) at η = 0 according to the first of Eqs. (28) gives the condition

2

πλ̂
= Le(n+1)/2

[
Gn(θs;h) +

1
2
Le(n+1)/2τ̂2λ̂

(
− θs − γh

√
π
/
2
)2n

e2νθs

]
, (36)

where Gn(θs;h) is defined as

Gn(θs;h) =
∫ θs

−∞

(
− θ̄1 − γh

√
π
/
2
)n
eθ̄1 dθ̄1 =

∫ ∞

−θs

(
u− γh

√
π
/
2
)n
e−u du . (37)
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Equation (36) thus determines the surface-temperature coefficient θs, which, through the definition

of the temperature variable Θ in Eq. (13), determines the leading-order perturbation in the

normalized surface temperature Ts relative to the characteristic, or zeroth order, flame temperature

Tf given by Eq. (31). As discussed in detail in the following section, Equation (36) also admits a

physical solution for θs only for parameter values that do not exceed a critical condition, and thus

Eq. (36) defines an extinction criterion beyond which the present solution does not exist.

4. Extinction Limits

The integral represented by Gn(θs;h) can be evaluated explicitly for integer values of the

reaction order n. Thus, for the first several integer values of n, we obtain

n = 0 : G0(θs;h) = eθs ,

n = 1 : G1(θs;h) =
(
1 − θs − γh

√
π
/
2
)
eθs ,

n = 2 : G2(θs;h) =
[
1 +

(
1 − θs − γh

√
π
/
2
)2]

eθs ,

n = 3 : G3(θs;h) =
[
2 + 3

(
1 − θs − γh

√
π
/
2
)

+
(
1 − θs − γh

√
π
/
2
)3]

eθs .

(38)

We note that the result (35), in the absence of heat loss (h = 0) and with n = 1, essentially recovers

that given in [1]. The only difference is that the left-hand side of Eq. (36), which results from the

matching of dθ1/dη in the limit η → ∞ with the potential stagnation-point flow assumed here, is

replaced with a different constant, expressed as an integral, that arises from the boundary-layer

nature of the outer flow that was considered in that study. Thus, the solution-response curves

obtained here, in the limit h = 0 and n = 1, are identical in form to those previous results.

Although physically we regard Equation (36) as an implicit equation for θs, it is computation-

ally more convenient to define the two parameters α1 and α2 according to

α1 =
2

πλ̂
, α2 =

1
2
τ̂2λ̂ , (39)

and to calculate α1 as an explicit function of θs for various values of α2 and the remaining param-

eters. Here, α1, being inversely proportional to λ̂ and hence Λg, may be regarded, according to

the definition (7) of Λg, as a measure of either the strain rate ã or the reciprocal of the gas-phase

reaction rate. Similarly, α2, which is proportional to τ̂2λ̂, or to (Λs/Λg)2Λg, is independent of

ã, but does represent a relative measure of the surface reaction rate with respect to that of the

bulk gas (in units of the gas-phase rate). The remaining parameters of interest, h, ν, n and Le,

are proportional to the rate of volumetric heat loss, the ratio of the surface activation energy to

that of the gas-phase reaction, the reaction order and the ratio of the thermal to mass diffusivities,

respectively.

We first analyze the results for the non-catalytic problem (α2 = 0). For n = 1, Eq. (36) thus

becomes
α1

Le
=

(
1 − θs − γh

√
π
/
2
)
eθs , n = 1 , (40)
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where, from Eq. (33) and the fact that the inner mass-fraction variable ζ1 is nonnegative, physical

solutions are always restricted to −θs ≥ hγ
√
π
/
2, the lower limit corresponding to complete

consumption of reactants by the gas-phase reaction (in which case ζs = 0). The solution curve

α1(−θs) is shown in Figure 3a, where we observe that no steady, planar solution exists for α1/Le >

e−γh
√

π/2. Thus, we interpret this critical value of the strain-rate parameter α1 as an extinction

limit, a limit that is proportional to the Lewis number Le and which decreases exponentially

with increasing values of the heat-loss parameter h. With respect to h, the critical condition for

extinction is thus γh > (2/
√
π ) ln(Le/α1), so that smaller values of the strain rate allow the flame

to tolerate larger heat losses. We note that with respect to the parameter α1, the flame is either

more or less resistant to extinction, depending respectively on whether Le > 1 or Le < 1. The

corresponding results for n = 2, which are obtained from

α1

Le3/2
=

[
1 +

(
1 − θs − γh

√
π
/
2
)2]

eθs , n = 2 , (41)

are exhibited in Figure 3b. We observe that the criterion for extinction in this case is α1/Le
3/2 >

2 e−γh
√

π/2 or, in terms of h, γh > (2/
√
π ) ln(2Le3/2/α1). Thus, relative to the n = 1 case, the

flame is more resistant to the extinguishing effects of strain and heat loss for 2Le1/2 > 1 (i.e.,

Le >
√

2
/
2), but is more prone to extinction for Lewis numbers smaller than this value.

Turning attention to the catalytic problem (α2 > 0), we consider in detail the case in which

the overall reaction order n is unity. Thus, for n = 1, Eq. (36) determines the solution response

according to

α1

Le
=

(
1 − θs − γh

√
π
/
2
)
eθs + α2Le(−θs − γh

√
π
/
2)2e2νθs , n = 1 , (42)

where, as always, physical solutions are restricted to −θs ≥ hγ
√
π
/
2. In order to analyze the

solution response, it is useful to first calculate dα1/d(−θs), which is given by

dα1

d(−θs)
= Le

[
(−θs) − γh

√
π
/
2
]
e−(−θs)

[
−1 + 2α2Le

{
1 − ν

[
(−θs) − γh

√
π
/
2
]}

e(1−2ν)(−θs)
]
.

(43)

Thus, the equation dα1/d(−θs) = 0 always has a root at −θs = γh
√
π/2, corresponding to α1/Le =

e−γh
√

π
/

2, and may have additional physical roots(s) at value(s) of −θs that satisfy the condition

2α2Le
{
1 − ν

[
(−θs) − γh

√
π
/
2
]}

= e(2ν−1)(−θs) . (44)

For example, if ν = 1/2, corresponding to the case in which the activation energy of the catalytic

surface reaction is half that of the distributed reaction in the bulk gas, Eq. (44) is satisfied when

−θs = γh
√
π
/
2 + δ, where δ = (2α2Le− 1)/(α2Le). Thus, for α2Le > 1/2 (i.e., for δ > 0), there

exists a physical root of Eq. (44) corresponding to α1 = αe
1 = Le(1 + δ + α2Leδ

2)e−γh
√

π/2−δ. On

13



the other hand, for α2Le < 1/2 (i.e., for δ < 0), this additional root is unphysical since it occurs

for −θs < γh
√
π
/
2.

The consequences of a physical root of Eq. (44) are clear from Figures 4a and 4b, which

are drawn for the case ν = 1/2 just described. For α2Le > 1/2, corresponding to a sufficiently

vigorous surface reaction, the extinction limit is increased (since d2α1/d(−θs)2
∣∣
−θs=γh

√
π/2

> 0)

to the value α1 = αe
1 given above (Figure 4a). In addition, the solution becomes multi-valued

for Le · e−γh
√

π/2 < α1 < αe
1, implying both a high- and low-temperature solution (corresponding

to a small and large value of −θs, respectively) for α1 within this range. On the other hand, for

α2Le < 1/2 (Figure 4b), which corresponds to a relatively weak surface reaction, the extinction

limit α1 = Le ·e−γh
√

π/2 remains the same as that in the absence of a catalytic reaction altogether.

That is, even though a weak catalytic reaction does modify the solution response relative to the

noncatalytic case, the maximum possible value of α1 is unchanged. This can be seen from a

comparison of Figures 3a and 4b, which were drawn for the same value of h and Le = 1. In

physical terms, the effects of a sufficiently active surface reaction at a reduced activation energy

allows for a lower peak flame temperature (i.e., a larger value of −θs, which, according to Eq.

(33), is required to accommodate a larger value of ζs), thereby extending the extinction limit. This

corresponds to the fact that reactants which leak through the gas-phase reaction region are still

able to undergo conversion at the catalytic surface. If the catalytic reaction is weak or absent

altogether, this additional opportunity for reaction is reduced or eliminated, and consequently, the

gas flame cannot sustain itself at higher values of the strain-rate parameter α1 than can be tolerated

in the noncatalytic case. In terms of the heat-loss parameter h, the critical value corresponding to

extinction is raised to γh = γhe = (2
/√

π)
[
ln(Le/α1) + ln(1 + δ + α2Leδ

2) − δ
]
. As δ ↓ 0 (i.e., as

α2Le ↓ 1/2), the maximum rate of heat loss that can be tolerated for a given value of α1 is reduced

to the previous limit given above for the noncatalytic problem.

Extending these results beyond the special case ν = 1/2, we observe from differentiating Eq.

(43) that
d2α1

d(−θs)2

∣∣∣∣
−θs=γh

√
π/2

= Le · e−γh
√

π/2
[
2α2Le · e(1−2ν)γh

√
π/2 − 1

]
. (45)

Thus, at the smallest physical value for −θs, namely −θs = −θ0
s = γh

√
π
/
2, d2α1/d(−θs)2 is

either positive or negative depending on whether 2α2Le is greater or less than e(2ν−1)hγ
√

π/2. In

the first case, since dα1/d(−θs) is zero at −θ0
s , α1 will increase with increasing −θs until it reaches

a maximum at the value of −θs given by the single root of Eq. (44). This argument holds for all

values of ν since, at −θs = −θ0
s , the left-hand side of Eq. (44) exceeds the value of the righthand

side, leading to a single intersection when the linear left-hand and exponential right-hand sides

of Eq. (44) are plotted against −θs. Consequently, for 2α2Le > e(2ν−1)hγ
√

π/2, the qualitative

behavior will be identical to Figure 4a, indicating an extension of the extinction limit as described

above.
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On the other hand, for the case 2α2Le < e(2ν−1)hγ
√

π/2, corresponding to a negative value

of d2α1/d(−θs)2 at −θ1 = −θ0
s and hence a decrease in α1 as −θs increases from that value, the

qualitative nature of the solution response depends on whether ν is greater or less than 1/2. If

ν ≥ 1/2, the right-hand side of Eq. (44) is either exponentially increasing or constant, whereas

the left-hand side is a linearly decreasing function of −θs. In this case, since the left-hand side of

Eq. (44) is less than the value of the righthand side at −θs = −θ0
s , there are no physical roots

of Eq. (44), the solution response is qualitatively similar to Figure 4b, and there is no catalytic

extension of the extinction limit. This situation persists as ν decreases below the value 1/2 (in

which case the right-hand side of Eq. (44) becomes a decaying exponential) until at some point the

linearly decreasing left-hand side of Eq. (44) intersects the exponentially-decaying right-hand side

tangentially in at first one, and then two places. The first of these roots, if it occurs for −θs > −θ0
s ,

then corresponds to a relative minimum in the α1(−θs) response, while the second corresponds to a

relative maximum and hence an extension of the extinction limit due to surface catalysis (provided

this root occurs in the physical range −θs > −θ0
s and the relative maximum value of α1 exceeds

the value at −θ0
s). We observe that in the two-root case just described, the solution response is

triple-valued for a range of α1 values, corresponding to low-, intermediate- and high-temperature

solution branches.

The various scenarios just described for ν < 1/2, which illustrate how different effects can

counterbalance one another, are illustrated in Figures 5a–e. In particular, the h = 0 curve in

Figure 5a demonstrates both the aforementioned relative minimum and maximum for 2α2Le <

e(2ν−1)hγ
√

π/2, while the other two curves for h > 0 exhibit only the relative maximum in the

physical range −θs > −θ0 as the decrease in h eventually leads to the parameter regime 2α2Le >

e(2ν−1)hγ
√

π/2. In Figure 5b, which is qualitatitively similar to Figure 5a, the surface activation-

energy parameter ν has been decreased further with respect to its previous value, leading to a

greater catalytic effect and a consequently greater extension of the extinction limit. This same

effect is achieved by increasing the surface reaction-rate parameter α2 to the value used in Figure

5c, where there is now no relative minimum in any of the solution responses since the value of

α2Le is now sufficiently large that 2α2Le > e(2ν−1)hγ
√

π/2 for all h ≥ 0. Hence, decreasing ν and

increasing α2 have the same qualitative effect on the extension of the extinction limit. Finally,

the effects of Lewis number on the solution response in the present case is shown in Figures 5d

and 5e, corresponding to Lewis numbers less than and greater than unity, respectively. Figures 5d

and 5e are qualitatively similar to Figure 5a, which depicts the unity Lewis-number case for the

same values of the remaining parameters. Comparison of these three figures shows that smaller

Lewis numbers, which correspond to an increase in the leading-order flame temperature and a

reduced catalytic influence arising from a lower surface reactant concentration, as described below

Eq. (31), result in less of an extension of the extinction limit. Larger Lewis numbers, on the
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other hand, correspond to a decrease in Tf , a larger surface reactant concentration, and thus an

enhanced catalytic effect that leads to a greater extension of the extinction limit. Consequently,

relative to the noncatalytic problem, the positive effects of catalysis in extending the extinction

limit are enhanced for larger Lewis-number flames.

5. Conclusion

The present analysis has shown that in a fundamental strained-flame geometry, the presence

of a catalytic surface has the potential to significantly extend the extinction limits arising from the

effects of flame stretch and heat loss. In particular, reactants that leak through the distributed

portion of the gas flame due to either larger strain rates and/or larger rates of heat loss that lower

the reaction rate, have an additional opportunity to react under the influence of a catalyst at the

surface. Such an influence is particularly desirable from the standpoint of building small combustors

with dimensions on the order of a millimeter or less. Such combustors have correspondingly larger

surface-to-volume ratios, and the present work has therefore focused on extending earlier studies

to the nonadiabatic regime. Recent experiments suggest that combustors with dimensions under

a millimeter can support a self-sustaining flame when one of the walls acts as a catalytic surface.

The solution response of the model problem has been displayed as a plot of a surface-

temperature perturbation versus a rate-of-strain parameter, for various values of a volumetric

heat-loss coefficient and other parameters of interest. The results clearly demonstrate how, in cer-

tain parameter regimes associated with a strongly catalytic effect, the solution response is modified

from the noncatalytic case to allow for a larger value of the strain rate and/or rate of heat loss

than would be the case in the absence of catalysis. In addition, it was shown that although larger

Lewis numbers, corresponding to less mobile (heavier) reactants that have reduced ability to diffuse

across the streamlines of the divergent flow, lead to a lowering of the flame temperature in the

absence of catalysis, the effect of a catalyst becomes more significant for such Lewis numbers once

reactants are convectively transported to the vicinity of the catalytic surface. In such cases, the

solution response exhibits an extinction limit at a value of the strain rate (or heat-loss coefficient)

that is larger than the corresponding value in the absence of catalysis, resulting in a catalytic

extension of the extinction limit.

Appendix

The determination that A1 = 0 in Eq. (32) follows from a consideration of the next-order

inner problem for θ2 and ζ2 in the expansions (25). That problem, obtained from Eqs. (14), (15)

and (17), is given by

0 =
d2θ2
dη2

+ qλ̂f(ζ1, ζ2, θ1, θ2;n) eθ1 , 0 = Le−1 d
2ζ2
dη2

− λ̂f(ζ1, ζ2, θ1, θ2;n) eθ1 , (A.1)
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subject to the matching conditions

θ2 ∼ Θ2

∣∣
z=0

+ η
dΘ1

dz

∣∣∣∣
z=0

+
1
2
η2 d

2Θ0

dz2

∣∣∣∣
z=0

, ζ2 ∼ 1
2
η2 d

2y0

dz2

∣∣∣∣
z=0

as η → ∞ . (A.2)

and the boundary conditions

dθ2
dη

∣∣∣∣
η=0

= −qτ̂ λ̂0f(ζs, ζ̂s, θs, θ̂s;n) eνθs , Le−1 dζ2
dη̂

∣∣∣∣
η=0

= τ̂ λ̂f(ζs, ζ̂s, θs, θ̂s;n) eνθs , (A.3)

where ζ̂s = ζ2
∣∣
η=0

, θ̂s = θ2
∣∣
η=0

, and f(ζ1, ζ2, θ1, θ2;n) = ζn
2 + ζn−1

1

[
θ2 − (1 − σ)θ2

1

]
.

Adding the first and q times the second of Eqs. (A.1), integrating once, and using Eqs. (A.3)

to evaluate the constant of integration, we obtain

dθ2
dη

+ Le−1q
dζ2
dη

= 0 . (A.4)

The left-hand side of Eq. (A.4) may now be evaluated for large η according to the matching

conditions (A.2). From the outer solution given by Eqs. (20) and (24), we calculate dΘ1/dz
∣∣
z=0

=

−2A1

/√
π and d2Θ0/dz

2
∣∣
z=0

= d2y0/dz
2
∣∣
z=0

= 0. Consequently, we obtain from Eq. (A.4)

evaluated at η = ∞ the result A1 = 0.
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Figure Captions

Fig. 1. Model geometry for a nonadiabatic premixed flame in stagnation-point flow. Heat loss is

modelled volumetrically and is related to the surface-to-volume ratio of the combustor.

Near extinction, the reaction region lies adjacent to the catalytic surface.

Fig. 2. Outer solution profiles. The curves for Θ(o)(z;H) and y(o)(z;Le) were drawn for H = 0.1

and Le = 1, respectively.

Figs. 3a,b. Solution response in the absence of catalysis (α2 = 0) for reaction orders (a) n = 1

and (b) n = 2. Physical solutions (solid curve) are restricted to −θs ≥ hγ
√
π
/
2. A

steady, planar solution does not exist for α1 > αe
1, where αe

1 is the extinction limit given

by αe
1 = Le · e−hγ

√
π/2 for n = 1 and αe

1 = 2Le3/2e−hγ
√

π/2 for n = 2. The curves

corresponding to h > 0 were drawn for h = 2.

Figs. 4a,b. Solution response for activation-energy ratio ν = 1/2 and either (a) 2α2Le > 1 or (b)

2α2Le < 1. For α2 > (2Le)−1, corresponding to a relatively strong surface reaction, an

extension of the extinction limit to the higher value αe
1 = Le(1 + δ+α2δ

2Le) e−hγ
√

π/2−δ

is realized. For α2 < (2Le)−1, corresponding to a relatively weak catalytic influence, the

solution response is modified accordingly, but the extinction limit is the same as that

obtained in the absence of catalysis. The curves in (a) were drawn for α2 = 1, while those

in (b) were drawn for α2 = 7/16. Remaining parameter values were taken as Le = 1 and

(for h > 0) h = 2.

Figs. 5a–e. Solution response for ν < 1/2 and various values of h, Le and α2: (a) ν = 0.2, Le = 1

and α2 = 0.35; (b) ν = 0.15, Le = 1 and α2 = 0.35; (c) ν = 0.2, Le = 1 and α2 = 0.6; (d)

ν = 0.2, Le = 0.75 and α2 = 0.35; (e) ν = 0.2, Le = 1.25 and α2 = 0.35. Larger values of

α2 and Le, along with smaller values of ν, have a tendency to extend the extinction limit

and can thus compensate for the extinguishing effects of larger values of the heat-loss

parameter h.
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Figure 1

Model geometry for a nonadiabatic premixed flame in stagnation-point flow. Heat loss is modelled

volumetrically and is related to the surface-to-volume ratio of the combustor. Near extinction, the

reaction region lies adjacent to the catalytic surface.

20



0 0.5 1 1.5 2 2.5
z

0.2

0.4

0.6

0.8

1

yHoLHz;LeLQ0HzL
QHoLHz;HL

-Q1HzL
Figure 2

Outer solution profiles. The curves for Θ(o)(z;H) and y(o)(z;Le) were drawn for H = 0.1 and

Le = 1, respectively.
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Figure 3a

Solution response in the absence of catalysis (α2 = 0) for reaction order n = 1. Physical solutions

(solid curve) are restricted to −θs ≥ hγ
√
π
/
2. A steady, planar solution does not exist for α1 >

αe
1 = Le · e−hγ

√
π/2, where αe

1 is the extinction limit. The curve corresponding to h > 0 was drawn

for h = 2.
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Figure 3b

Solution response in the absence of catalysis (α2 = 0) for reaction order n = 2. Physical solutions

(solid curve) are restricted to −θs ≥ hγ
√
π
/
2. A steady, planar solution does not exist for α1 >

αe
1 = 2Le3/2e−hγ

√
π/2, where αe

1 is the extinction limit. The curve corresponding to h > 0 was

drawn for h = 2.
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Figure 4a

Solution response for activation-energy ratio ν = 1/2 and 2α2Le > 1. For α2 > (2Le)−1, corre-

sponding to a relatively strong surface reaction, an extension of the extinction limit to the higher

value αe
1 = Le(1 + δ + α2δ

2Le) e−hγ
√

π/2−δ is realized. The curves were drawn for α2 = 1, Le = 1

and (for h > 0) h = 2.
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Figure 4b

Solution response for activation-energy ratio ν = 1/2 and 2α2Le < 1. For α2 < (2Le)−1, cor-

responding to a relatively weak catalytic influence, the solution response is modified accordingly,

but the extinction limit is the same as that obtained in the absence of catalysis. The curves were

drawn for α2 = 7/16, Le = 1 and (for h > 0) h = 2.
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Solution response for ν < 1/2 and several values of h: (a) ν = 0.2, Le = 1 and α2 = 0.35. Larger

values of α2 and Le, along with smaller values of ν, have a tendency to extend the extinction limit

and can thus compensate for the extinguishing effects of larger heat losses.
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Solution response for ν < 1/2 and several values of h: (b) ν = 0.15, Le = 1 and α2 = 0.35 Larger

values of α2 and Le, along with smaller values of ν, have a tendency to extend the extinction limit

and can thus compensate for the extinguishing effects of larger heat losses.
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Solution response for ν < 1/2 and several values of h: (c) ν = 0.2, Le = 1 and α2 = 0.6. Larger

values of α2 and Le, along with smaller values of ν, have a tendency to extend the extinction limit

and can thus compensate for the extinguishing effects of larger heat losses.
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Figure 5d

Solution response for ν < 1/2 and several values of h: (d) ν = 0.2, Le = 0.75 and α2 = 0.35. Larger

values of α2 and Le, along with smaller values of ν, have a tendency to extend the extinction limit

and can thus compensate for the extinguishing effects of larger heat losses.
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Figure 5e

Solution response for ν < 1/2 and several values of h: (e) ν = 0.2, Le = 1.25 and α2 = 0.35. Larger

values of α2 and Le, along with smaller values of ν, have a tendency to extend the extinction limit

and can thus compensate for the extinguishing effects of larger heat losses.
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