5,556 research outputs found

    Quantum Kinetic Theory VI: The Growth of a Bose-Einstein Condensate

    Full text link
    A detailed analysis of the growth of a BEC is given, based on quantum kinetic theory, in which we take account of the evolution of the occupations of lower trap levels, and of the full Bose-Einstein formula for the occupations of higher trap levels, as well as the Bose stimulated direct transfer of atoms to the condensate level introduced by Gardiner et al. We find good agreement with experiment at higher temperatures, but at lower temperatures the experimentally observed growth rate is somewhat more rapid. We also confirm the picture of the ``kinetic'' region of evolution, introduced by Kagan et al., for the time up to the initiation of the condensate. The behavior after initiation essentially follows our original growth equation, but with a substantially increased rate coefficient. Our modelling of growth implicitly gives a model of the spatial shape of the condensate vapor system as the condensate grows, and thus provides an alternative to the present phenomenological fitting procedure, based on the sum of a zero-chemical potential vapor and a Thomas-Fermi shaped condensate. Our method may give substantially different results for condensate numbers and temperatures obtained from phenomentological fits, and indicates the need for more systematic investigation of the growth dynamics of the condensate from a supersaturated vapor.Comment: TeX source; 29 Pages including 26 PostScript figure

    Emergent classicality in continuous quantum measurements

    Full text link
    We develop a classical theoretical description for nonlinear many-body dynamics that incorporates the back-action of a continuous measurement process. The classical approach is compared with the exact quantum solution in an example with an atomic Bose-Einstein condensate in a double-well potential where the atom numbers in both potential wells are monitored by light scattering. In the classical description the back-action of the measurements appears as diffusion of the relative phase of the condensates on each side of the trap. When the measurements are frequent enough to resolve the system dynamics, the system behaves classically. This happens even deep in the quantum regime, and demonstrates how classical physics emerges from quantum mechanics as a result of measurement back-action

    Tripartite entanglement and threshold properties of coupled intracavity downconversion and sum-frequency generation

    Get PDF
    The process of cascaded downconversion and sum-frequency generation inside an optical cavity has been predicted to be a potential source of three-mode continuous-variable entanglement. When the cavity is pumped by two fields, the threshold properties have been analysed, showing that these are more complicated than in well-known processes such as optical parametric oscillation. When there is only a single pumping field, the entanglement properties have been calculated using a linearised fluctuation analysis, but without any consideration of the threshold properties or critical operating points of the system. In this work we extend this analysis to demonstrate that the singly pumped system demonstrates a rich range of threshold behaviour when quantisation of the pump field is taken into account and that asymmetric polychromatic entanglement is available over a wide range of operational parameters.Comment: 24 pages, 15 figure

    Quadripartite continuous-variable entanglement via quadruply concurrent downconversion

    Get PDF
    We investigate an intra-cavity coupled down-conversion scheme to generate quadripartite entanglement using concurrently resonant nonlinearities. We verify that quadripartite entanglement is present in this system by calculating the output fluctuation spectra and then considering violations of optimized inequalities of the van Loock-Furusawa type. The entanglement characteristics both above and below the oscillation threshold are considered. We also present analytic solutions for the quadrature operators and the van Loock-Furusawa correlations in the undepleted pump approximation.Comment: 9 pages, 5 figure

    Analysis of a continuous-variable quadripartite cluster state from a single optical parametric oscillator

    Get PDF
    We examine the feasibility of generating continuous-variable multipartite entanglement in an intra-cavity quadruply concurrent downconversion scheme that has been proposed for the generation of cluster states by Menicucci \textit{et al.} [Physical Review Letters \textbf{101}, 130501 (2008)]. By calculating optimized versions of the van Loock-Furusawa correlations we demonstrate genuine quadripartite entanglement and investigate the degree of entanglement present. Above the oscillation threshold the basic cluster state geometry under consideration suffers from phase diffusion. We alleviate this problem by incorporating a small injected signal into our analysis. Finally, we investigate squeezed joint operators. While the squeezed joint operators approach zero in the undepleted regime, we find that this is not the case when we consider the full interaction Hamiltonian and the presence of a cavity. In fact, we find that the decay of these operators is minimal in a cavity, and even depletion alone inhibits cluster state formation.Comment: 26 pages, 12 figure

    Commuting Heisenberg operators as the quantum response problem: Time-normal averages in the truncated Wigner representation

    Get PDF
    The applicability of the so-called truncated Wigner approximation (-W) is extended to multitime averages of Heisenberg field operators. This task splits naturally in two. Firstly, what class of multitime averages the -W approximates, and, secondly, how to proceed if the average in question does not belong to this class. To answer the first question we develop an (in principle, exact) path-integral approach in phase-space based on the symmetric (Weyl) ordering of creation and annihilation operators. These techniques calculate a new class of averages which we call time-symmetric. The -W equations emerge as an approximation within this path-integral techniques. We then show that the answer to the second question is associated with response properties of the system. In fact, for two-time averages Kubo's renowned formula relating the linear response function to two-time commutators suffices. The -W is trivially generalised to the response properties of the system allowing one to calculate approximate time-normally ordered two-time correlation functions with surprising ease. The techniques we develop are demonstrated for the Bose-Hubbard model.Comment: 20 pages, 6 figure

    Decoherence of number states in phase-sensitive reservoirs

    Full text link
    The non-unitary evolution of initial number states in general Gaussian environments is solved analytically. Decoherence in the channels is quantified by determining explicitly the purity of the state at any time. The influence of the squeezing of the bath on decoherence is discussed. The behavior of coherent superpositions of number states is addressed as well.Comment: 5 pages, 2 figures, minor changes, references adde

    Intensity fluctuations in steady state superradiance

    Full text link
    Alkaline-earth like atoms with ultra-narrow optical transitions enable superradiance in steady state. The emitted light promises to have an unprecedented stability with a linewidth as narrow as a few millihertz. In order to evaluate the potential usefulness of this light source as an ultrastable oscillator in clock and precision metrology applications it is crucial to understand the noise properties of this device. In this paper we present a detailed analysis of the intensity fluctuations by means of Monte-Carlo simulations and semi-classical approximations. We find that the light exhibits bunching below threshold, is to a good approximation coherent in the superradiant regime, and is chaotic above the second threshold.Comment: 8 pages, 5 figure

    Asymmetric Gaussian harmonic steering in second-harmonic generation

    Get PDF
    Intracavity second-harmonic generation is one of the simplest of the quantum optical processes and is well within the expertise of most optical laboratories. It is well understood and characterized, both theoretically and experimentally. We show that it can be a source of continuous-variable asymmetric Gaussian harmonic steering with fields which have a coherent excitation, hence combining the important effects of harmonic entanglement and asymmetric steering in one easily controllable device, adjustable by the simple means of tuning the cavity loss rates at the fundamental and harmonic frequencies. We find that whether quantum steering is available via the standard measurements of the Einstein-Podolsky-Rosen correlations can depend on which quadrature measurements are inferred from output spectral measurements of the fundamental and the harmonic. Altering the ratios of the cavity loss rates can be used to tune the regions where symmetric steering is available, with the results becoming asymmetric over all frequencies as the cavity damping at the fundamental frequency becomes significantly greater than at the harmonic. This asymmetry and its functional dependence on frequency is a potential new tool for experimental quantum information science, with possible utility for quantum key distribution. Although we show the effect here for Gaussian measurements of the quadratures, and cannot rule out a return of the steering symmetry for some class of non-Gaussian measurements, we note here that the system obeys Gaussian statistics in the operating regime investigated and Gaussian inference is at least as accurate as any other method for calculating the necessary correlations. Perhaps most importantly, this system is simpler than any other methods we are aware of which have been used or proposed to create asymmetric steering

    Isospin fluctuations in spinodal decomposition

    Full text link
    We study the isospin dynamics in fragment formation within the framework of an analytical model based on the spinodal decomposition scenario. We calculate the probability to obtain fragments with given charge and neutron number, focussing on the derivation of the width of the isotopic distributions. Within our approach this is determined by the dispersion of N/Z among the leading unstable modes, due to the competition between Coulomb and symmetry energy effects, and by isovector-like fluctuations present in the matter that undergoes the spinodal decomposition. Hence the widths exhibit a clear dependence on the properties of the Equation of State. By comparing two systems with different values of the charge asymmetry we find that the isotopic distributions reproduce an isoscaling relationship.Comment: 18 RevTex4 pages, 6 eps figure
    • ā€¦
    corecore