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Quadripartite continuous-variable entanglement via quadruply concurrent down-conversion
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We investigate an experimentally feasible intracavity coupled down-conversion scheme to generate quadri-
partite entanglement using concurrent nonlinearities. We verify that quadripartite entanglement is present in this
system by calculating the output fluctuation spectra and then considering violations of optimized inequalities of
the van Loock–Furusawa type. The entanglement characteristics both above and below the oscillation threshold
are considered. We also present analytic solutions for the quadrature operators and the van Loock–Furusawa
correlations in the undepleted pump approximation.
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I. INTRODUCTION

Entanglement is a concept of central importance in quantum
theory and continues to inspire both theoretical and experi-
mental efforts to explore quantum systems. In addition to this,
entanglement is the main resource of quantum information and
in particular, multipartite continuous-variable (CV) entangled
states have grown to be pivotal in multipartite quantum
communication [1–7]. The criteria which must be satisfied
to establish whether bipartite entanglement exists in a given
system are well known for the CV case [8,9]. Furthermore,
bipartite entanglement can be realized experimentally. The
criteria for the bipartite scenario have been generalized for
multipartite entanglement by van Loock and Furusawa [10].
Advances have also taken place in the experimental generation
of tripartite entanglement. In particular, there have been
experiments where entangled beams are produced by mixing
squeezed beams with linear optics [2,4,5,7,11,12]. Several pro-
posals have also been made whereby multifrequency entangled
outputs are generated. These rely on the use of nondegenerate
down-conversion [13] or cascaded or concurrent nonlinear
optical processes [14–19] where the tripartite entanglement is
instead produced via the interaction with the nonlinear medium
itself. It is these concurrent processes that we consider in this
work for the quadripartite case.

In regards to quadripartite entangled beams, there have
been theoretical proposals based on linear optics and cascaded
nonlinearites [20–23]. In this work we build on a tripartite
scheme proposed by Bradley et al. in [17] but for the case of
quadruply concurrent nonlinearities. Furthermore, we use an
optimized version of the van Loock–Furusawa inequalities to
demonstrate quadripartite entanglement in this system.

This article is organized as follows. In Sec. II we describe
the Hamiltonian and the physical system under consideration.
Section III discusses the van Loock–Furusawa (VLF) criteria
as a means of quantifying quadripartite entanglement. Section
IV considers the interaction Hamiltonian in the undepleted
pump approximation and gives analytic solutions for the
quadrature operators, as well as the VLF correlations. In
Sec. V we present the full equations of motion for the system
and Sec. VI gives the steady-state solutions to the classical
versions of the equations of motion and provides an overview
of the linearized fluctuation analysis used in this work to

calculate the measurable output fluctuation spectra from the
cavity. These output spectra are are found in Sec. VII and used
to demonstrate violation of the optimized VLF criteria and,
hence, demonstrate quadripartite entanglement.

II. SYSTEM AND HAMILTONIAN

We model a system in which pump lasers drive four modes
in an optical cavity. As depicted in the simplified experimental
setup shown in Fig. 1, the four inputs interact with a χ (2)

nonlinear crystal to produce four low-frequency entangled
output beams at frequencies ω5, ω6, ω7, and ω8. For example,
mode 1 is pumped at a particular frequency and polarization
such that it produces modes 5 and 6.

This is an experimentally feasible system. The reader
will find very concrete and detailed experimental proposals
in [14,24–26] for quadripartite states and in [27,28] for a much
more complex, scalable cluster state suitable for universal
quantum computing [29]. Note also that the required nonlinear
media [26,27] have been experimentally demonstrated in
quasi-phase-matched KTiOPO4 [25] and their optimized and
sophisticated engineering has recently been experimentally
validated [30].

The full Hamiltonian for the eight-mode system, describing
the interaction inside the optical cavity and the interaction of
the cavity fields with the output fields, can be written as

H = Hpump + Hint + Hfree + Hres, (1)

where the interaction Hamiltonian is

Hint = ih̄[χ1â1â
†
5â

†
6 + χ2â2â

†
6â

†
7 + χ3â3â

†
7â

†
8

+χ4â4â
†
8â

†
5] + H.c., (2)

with the χi representing the effective nonlinearities and âi

denoting the bosonic annihilation operators for the intra-
cavity modes at frequencies ωi . The pumping Hamiltonian,
describing the cavity driving fields, in the appropriate rotating
frame is

Hpump = ih̄

4∑
i=1

[εi â
†
i − ε∗

i âi], (3)
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FIG. 1. (Color online) Schematic of a χ (2) crystal inside a pumped
Fabry-Pérot cavity. Pump lasers drive four intracavity modes with
frequencies ω1, ω2, ω3, and ω4 (represented by circles and squares),
which are down-converted to four output modes with frequencies ω5,
ω6, ω7, and ω8.

and the cavity damping Hamiltonian is given by

Hres = h̄

8∑
i=1

[�̂i â
†
i + �̂

†
i âi], (4)

where εi are the classical pumping laser amplitudes for mode
i and the �̂i are the annihilation operators for bath quanta to
which each of the intracavity modes are coupled and which
represent losses through the cavity mirror.

III. QUADRIPARTITE ENTANGLEMENT MEASURES

In order to investigate multipartite entanglement, and in par-
ticular show that the system under consideration demonstrates
true quadripartite entanglement, we first define quadrature
operators [31] for each mode as

X̂i = âi + â
†
i , Ŷi = −i(âi − â

†
i ), (5)

such that [X̂i,Ŷi] = 2i. Based on this definition V (X̂i) � 1,
for example, indicates single-mode squeezing, where V (Â) =
〈Â2〉 − 〈Â〉2 denotes the variance. The conditions proposed by
van Loock and Furusawa [10], which are a generalization of
the conditions for bipartite entanglement [8,9], are sufficient to
demonstrate multipartite entanglement. We now demonstrate
how these may be optimized for the verification of genuine
quadripartite entanglement in this system.

Using the quadrature definitions in Eq. (5), the quadripartite
inequalities which must be simultaneously violated by the low
frequency modes are

V (X̂5 − X̂6) + V (Ŷ5 + Ŷ6 + g7Ŷ7 + g8Ŷ8) � 4, (6)

V (X̂6 − X̂7) + V (g5Ŷ5 + Ŷ6 + Ŷ7 + g8Ŷ8) � 4, (7)

V (X̂7 − X̂8) + V (g5Ŷ5 + g6Ŷ6 + Ŷ7 + Ŷ8) � 4, (8)

where the gi(i = 5,6,7,8) are arbitrary real parameters that
are used to optimize the violation of these inequalities. In
particular, we minimize Eqs. (6) and (8) with respect to g7,8

and g5,6, respectively. Solving the resulting equations leads to
the optimized expressions

g5 = V6(V57 + V58) − V56(V67 + V68)

V 2
56 − V5V6

, (9)

g6 = V5(V67 + V68) − V56(V57 + V58)

V 2
56 − V5V6

, (10)

g7 = V8(V57 + V67) − V78(V58 + V68)

V 2
78 − V7V8

, (11)

g8 = V7(V58 + V68) − V78(V57 + V67)

V 2
78 − V7V8

, (12)

where for covariances we use the notation Vij = (〈Ŷi Ŷj 〉 +
〈Ŷj Ŷi〉)/2 − 〈Ŷi〉〈Ŷj 〉 and for the case where i = j the co-
variance, denoted Vi , reduces to the usual variance, V (Ŷi). It is
important to note that in the uncorrelated limit these optimized
VLF criteria approach 4. Hence, without optimization, some
entanglement which is present may be missed.

IV. ANALYTIC SOLUTIONS IN THE UNDEPLETED
PUMP APPROXIMATION

It is useful to consider the interaction Hamiltonian in the
undepleted pump approximation in the absence of a cavity in
advance of a more complete approach that considers the full
quantum equations of motion for all of the interacting fields
inside a cavity. We stress here that these equations are not of
exact physical relevance but do give useful insights into the
properties of the Hamiltonian. Here we show that it is possible
to obtain analytic solutions for the quadrature operator equa-
tions of motion using the undepleted pump approximation.
This entails setting ξi = χi〈âi(0)〉 (i = 1,2,3,4), where ξi are
positive, real constants. Under these conditions, the interaction
Hamiltonian can be written as

Hint = ih̄[ξ1(â†
5â

†
6 − â5â6) + ξ2(â†

6â
†
7 − â6â7)

+ ξ3(â†
7â

†
8 − â7â8) + ξ4(â†

8â
†
5 − â8â5)]. (13)

The Heisenberg equations of motion can then be written

dâ5

dt
= ξ1â

†
6 + ξ4â

†
8, (14)

dâ6

dt
= ξ1â

†
5 + ξ2â

†
7, (15)

dâ7

dt
= ξ2â

†
6 + ξ3â

†
8, (16)

dâ8

dt
= ξ3â

†
7 + ξ4â

†
5, (17)

and these equations can be recast in terms of the quadrature
operators as follows:

dX̂5

dt
= ξ1X̂6 + ξ4X̂8, (18)

dŶ5

dt
= −ξ1Ŷ6 − ξ4Ŷ8, (19)

dX̂6

dt
= ξ1X̂5 + ξ2X̂7, (20)

dŶ6

dt
= −ξ1Ŷ5 − ξ2Ŷ7, (21)

dX̂7

dt
= ξ2X̂6 + ξ3X̂8, (22)
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dŶ7

dt
= −ξ2Ŷ6 − ξ3Ŷ8, (23)

dX̂8

dt
= ξ3X̂7 + ξ4X̂5, (24)

dŶ8

dt
= −ξ3Ŷ7 − ξ4Ŷ5. (25)

These are the equations that we solve to find analytic solutions
for the quadrature operators as functions of their initial values.

A. Solutions with equal ξi

To begin with, we set all the interactions equal so that
ξi = ξ and find analytic expressions for the VLF correlations
by solving the Heisenberg equations of motion for this case.
The solutions for the quadrature operators are found to be

X̂5(t) = AX̂5(0) + BX̂6(0) + CX̂7(0) + BX̂8(0), (26)

Ŷ5(t) = AŶ5(0) − BŶ6(0) + CŶ7(0) − BŶ8(0), (27)

X̂6(t) = BX̂5(0) + AX̂6(0) + BX̂7(0) + CX̂8(0), (28)

Ŷ6(t) = −BŶ5(0) + AŶ6(0) − BŶ7(0) + CŶ8(0), (29)

X̂7(t) = CX̂5(0) + BX̂6(0) + AX̂7(0) + BX̂8(0), (30)

Ŷ7(t) = CŶ5(0) − BŶ6(0) + AŶ7(0) − BŶ8(0), (31)

X̂8(t) = BX̂5(0) + CX̂6(0) + BX̂7(0) + AX̂8(0), (32)

Ŷ8(t) = −BŶ5(0) + CŶ6(0) − BŶ7(0) + AŶ8(0), (33)

where

A = cosh2(ξ t), (34)

B = 1
2 sinh(2ξ t), (35)

C = sinh2(ξ t). (36)

From these expressions for the quadrature operators it is
possible to find the variances and covariances necessary
to calculate the VLF criteria within the undepleted pump
approximation. In fact, the variances are all equal and given
by the following time-dependent moments:〈

X̂2
i

〉 = 〈
Ŷ 2

i

〉 = A2 + 2B2 + C2, (37)

since the expectation values of the amplitudes are all zero. Here
we have used the fact that 〈X̂i(0)X̂j (0)〉 = 〈Ŷi(0)Ŷj (0)〉 = δij .
A similar approach can be used to calculate the covariances
which are equivalent to the time-dependent moments 〈X̂iX̂j 〉
and 〈Ŷi Ŷj 〉. In particular, the covariances are given by

〈X̂5X6〉 = −〈Ŷ5Y6〉 = 2(AB + BC), (38)

〈X̂5X7〉 = 〈Ŷ5Y7〉 = 2(AC + B2), (39)

〈X̂5X8〉 = −〈Ŷ5Y8〉 = 2(AB + BC), (40)

〈X̂6X7〉 = −〈Ŷ6Y7〉 = 2(AB + BC), (41)

〈X̂6X8〉 = 〈Ŷ6Y8〉 = 2(AC + B2), (42)

〈X̂7X8〉 = −〈Ŷ7Y8〉 = 2(AB + BC). (43)
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FIG. 2. Analytic solutions for the optimized van Loock–
Furusawa correlations, V3, found by solving the Heisenberg equations
of motion in the undepleted pump approximation. A value of less than
4 signifies quadripartite entanglement. All quantities depicted here,
and in subsequent graphs, are dimensionless.

From these variances and covariances we obtain Eq. (44),
an analytic expression for the optimized VLF correlations
defined in Eqs. (6)–(8). All three VLF correlations are equal
when ξi = ξ , and hence we label any of the correlations in
Eqs. (6)–(8) as V3. Figure 2 provides a plot of these optimized
VLF correlations, V3, as a function of ξ t .

V3 = 4A2 − 4A
√

2B + 4(
√

2B − C)C

+ 2(B2 − 4B3/2C
√

2 + 12BC2 − 8C3
√

2B + 4C4)

A2 − 2A
√

B + B − C
√

2B + C2
.

(44)

We observe that quadripartite entanglement is present in this
system, with V3 < 4 for all ξ t . This suggests a more complete
treatment incorporating depletion of the pump fields and a
cavity will find where quadripartite entanglement is present.

B. Solutions with unequal ξi

For simplicity, here we assume that ξ1 = ξ2 and ξ3 = ξ4,

and setting � =
√

ξ 2
1 + ξ 2

3 we find that the solutions are given
by

X̂5(t) = DX̂5(0) + EX̂6(0) + FX̂7(0) + GX̂8(0), (45)

Ŷ5(t) = DŶ5(0) − EŶ6(0) + F Ŷ7(0) − GŶ8(0), (46)

X̂6(t) = EX̂5(0) + HX̂6(0) + EX̂7(0) + I X̂8(0), (47)

Ŷ6(t) = −EŶ5(0) + HŶ6(0) − EŶ7(0) + I Ŷ8(0), (48)

X̂7(t) = FX̂5(0) + EX̂6(0) + DX̂7(0) + GX̂8(0), (49)

Ŷ7(t) = F Ŷ5(0) − EŶ6(0) + DŶ7(0) − GŶ8(0), (50)

X̂8(t) = GX̂5(0) + I X̂6(0) + GX̂7(0) + J X̂8(0), (51)

Ŷ8(t) = −GŶ5(0) + I Ŷ6(0) − GŶ7(0) + J Ŷ8(0), (52)
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where

D = cosh2(�t/
√

2), (53)

E = sinh2(�t/
√

2), (54)

F = ξ1 sinh(
√

2�t)√
2�

, (55)

G = ξ3 sinh(
√

2�t)√
2�

, (56)

H = ξ 2
3 + ξ 2

1 cosh(
√

2�t)

�2
, (57)

I = ξ1ξ3[cosh(
√

2�t) − 1]

�2
, (58)

J = ξ 2
1 + ξ 2

3 cosh(
√

2�t)

�2
. (59)

We note here the generality of the solutions presented and that
other cases are possible numerically. The variances are given
by

〈
X̂2

5

〉 = 〈
Ŷ 2

5

〉 = D2 + E2 + F 2 + G2, (60)〈
X̂2

6

〉 = 〈
Ŷ 2

6

〉 = 2E2 + H 2 + I 2, (61)〈
X̂2

7

〉 = 〈
Ŷ 2

7

〉 = D2 + E2 + F 2 + G2, (62)〈
X̂2

8

〉 = 〈
Ŷ 2

8

〉 = 2G2 + I 2 + J 2, (63)

and the covariances are

〈X̂5X6〉 = −〈Ŷ5Y6〉 = DE + EH + EF + IG, (64)

〈X̂5X7〉 = 〈Ŷ5Y7〉 = 2DF + E2 + G2, (65)

〈X̂5X8〉 = −〈Ŷ5Y8〉 = DG + EI + FG + GJ, (66)

〈X̂6X7〉 = −〈Ŷ6Y7〉 = DE + EH + EF + IG, (67)

〈X̂6X8〉 = 〈Ŷ6Y8〉 = 2EG + HI + IJ, (68)

〈X̂7X8〉 = −〈Ŷ7Y8〉 = DG + EI + FG + GJ. (69)

As described in Sec. IV A, we can now calculate the VLF
correlations. Figure 3 shows the optimized VLF correlations
as a function of ξ1t , for the case ξ3 = 0.5ξ1. Again, we observe
that quadripartite entanglement is present in this system with
all three VLF correlations less than 4 for some ξ1t . Comparing
Figs. 2 and 3 we see that the greatest degree of entanglement
is obtained for the case where all ξi are equal. Figure 3 shows
that for each VLF correlation the entanglement is degraded
beyond a particular value of ξ1t ; however, this is not the case
in Fig. 2 when all the ξi are equal.

V. EQUATIONS OF MOTION FOR THE FULL
HAMILTONIAN

We now consider the full physical system, where the
nonlinear media are contained inside a pumped resonant
Fabry-Pérot cavity. The master equation for the density
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FIG. 3. Analytic solutions for the optimized van Loock–
Furusawa correlations, V56, V67, and V78 with ξ3 = 0.5ξ1, found by
solving the Heisenberg equations of motion in the undepleted pump
approximation. Having all three of the correlations drop below 4 is
sufficient to demonstrate quadripartite entanglement.

operator of the system can be found in the standard manner by
tracing over the reservoirs [32] and is given by

∂ρ̂

∂t
= − i

h̄
[Ĥpump + Ĥint,ρ̂] +

8∑
i=1

γiDi[ρ̂], (70)

where γi are the cavity loss rates at the respective frequen-
cies and Di[ρ̂] = 2âi ρ̂â

†
i − â

†
i âi ρ̂ − ρ̂â

†
i âi is the Lindblad

superoperator [32] under the usual zero-temperature Markov
approximation. From this one can derive the stochastic
differential equations (SDEs) in the positive-P representation
[33] and, in turn, study the intracavity dynamics.

Our approach [34] involves converting the quantum op-
erator equations of motion of Eq. (70) into a Fokker-Planck
equation for the positive-P representation pseudoprobability
distribution of the system [33,34]. This can then be interpreted
as a set of c-number SDEs. It should be noted that the use
of the positive-P representation, rather than the Glauber-
Sudarshan P representation [35,36], is necessary to ensure
that the diffusion matrix of the FPE is positive-definite. This
is achieved with the positive-P approach by defining two
independent stochastic fields αi and α+

i corresponding to
the mode operators âi and â

†
i , respectively, in the limit of a

large number of stochastic trajectories. Using this method it
is possible to calculate stochastic trajectory averages which
correspond to the normally ordered expectation values of
quantum-mechanical operators, for example, (αi)n(α+

j )m =
〈(â†

j )mân
i 〉. Taking this approach yields a diffusion matrix of

the form

D =
(

0 0

0 d

)
, (71)

where 0 is an 8 × 8 null matrix and the nonzero block is given
by
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d =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 χ1α1 0 0 0 χ4α4 0

0 0 0 χ1α
+
1 0 0 0 χ4α

+
4

χ1α1 0 0 0 χ2α2 0 0 0

0 χ1α
+
1 0 0 0 χ2α

+
2 0 0

0 0 χ2α2 0 0 0 χ3α3 0

0 0 0 χ2α
+
2 0 0 0 χ3α

+
3

χ4α4 0 0 0 χ3α3 0 0 0

0 χ4α
+
4 0 0 0 χ3α

+
3 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (72)

The matrix d can be factorized such that the Itô SDEs are
obtained. For the high-frequency fields, this process yields

dα1

dt
= ε1 − χ1α5α6 − γ1α1,

dα2

dt
= ε2 − χ2α6α7 − γ2α2,

(73)
dα3

dt
= ε3 − χ3α7α8 − γ3α3,

dα4

dt
= ε4 − χ4α8α5 − γ4α4,

and also the equations found by interchanging αi and α+
i .

While for the low-frequency fields, one obtains

dα5

dt
= χ1α1α

+
6 + χ4α4α

+
8 − γ5α5 +

√
χ1α1

2
[η5(t) + iη6(t)]

+
√

χ4α4

2
[η13(t) + iη14(t)],

dα6

dt
= χ1α1α

+
5 + χ2α2α

+
7 − γ6α6 +

√
χ1α1

2
[η5(t) − iη6(t)]

+
√

χ2α2

2
[η9(t) + iη10(t)],

dα7

dt
= χ2α2α

+
6 + χ3α3α

+
8 − γ7α7 +

√
χ3α3

2
[η1(t) + iη2(t)]

+
√

χ2α2

2
[η9(t) − iη10(t)],

dα8

dt
= χ3α3α

+
7 + χ4α4α

+
5 − γ8α8 +

√
χ3α3

3
[η1(t) − iη2(t)]

+
√

χ4α4

2
[η13(t) − iη14(t)], (74)

and also the equations found by interchanging αi and α+
i

and ηi(t) and ηi+2(t). The γi are the cavity loss rates at
the respective frequencies, and ηi(t) are real, independent,
Gaussian noise terms which satisfy ηi(t) = 0 and ηi(t)ηj (t ′) =
δij δ(t − t ′). It should be mentioned that we are assuming that
all the intracavity modes are resonant with the cavity, and
although it is possible to include detuning, we do not do so
here.

VI. STABILITY ANALYSIS AND FLUCTUATION SPECTRA

We conduct a linearized fluctuation analysis [32] of the
system for the purposes of calculating the output spectral
correlations for the cavity from the intracavity spectra. We
begin by neglecting the noise terms in Eq. (74) so that
α+

i → α∗
i and also set αi = ᾱi + δαi , where ᾱi is a mean value

and δαi represents the fluctuations. This gives a set of classical
equations for the mean values:

dᾱ1

dt
= ε1 − χ1ᾱ5ᾱ6 − γ1ᾱ1,

dᾱ2

dt
= ε2 − χ2ᾱ6ᾱ7 − γ2ᾱ2,

dᾱ3

dt
= ε3 − χ3ᾱ7ᾱ8 − γ3ᾱ3,

dᾱ4

dt
= ε4 − χ4ᾱ8ᾱ5 − γ4ᾱ4,

(75)
dᾱ5

dt
= χ1ᾱ1ᾱ

∗
6 + χ4ᾱ4ᾱ

∗
8 − γ5ᾱ5,

dᾱ6

dt
= χ1ᾱ1ᾱ

∗
5 + χ2ᾱ2ᾱ

∗
7 − γ6ᾱ6,

dᾱ7

dt
= χ2ᾱ2ᾱ

∗
6 + χ3ᾱ3ᾱ

∗
8 − γ7ᾱ7,

dᾱ8

dt
= χ3ᾱ3ᾱ

∗
7 + χ4ᾱ4ᾱ

∗
5 − γ8ᾱ8,

and from these we can obtain steady-state solutions.
In the remainder of this article we consider a symmetric

system where all the high-frequency modes have the same
cavity-damping rates, with γi = γ for i = 1,2,3,4 and all low-
frequency modes also have equal cavity-damping rates, with
γi = κ for i = 5,6,7,8. In addition to this, we assume that all
the nonlinearities and hence all the pump field amplitudes are
equal; that is, χi = χ and εi = ε, respectively.

For this completely symmetric system, we verify that there
is an oscillation threshold at the critical pumping amplitude,

εc = γ κ

2χ
, (76)

as is the case for triply concurrent down-conversion [17].
This result differs from the standard nondegenerate optical
parametric oscillator (OPO) threshold condition by a factor of
a half. This difference here is due to the fact that each pump
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mode drives two down-conversion processes. The stationary
solutions below this threshold value are found to be

ᾱi = ε

γ
for i ∈ {1,2,3,4},

(77)
ᾱi = 0 for i ∈ {5,6,7,8},

while above threshold the stationary solutions are given by

ᾱi = κ

2χ
for i ∈ {1,2,3,4}, (78)

ᾱi =
√

(ε − εc)/χ for i ∈ {5,6,7,8}. (79)

We see that the low-frequency modes become macroscopically
occupied as the pumping is increased and the high-frequency
modes remain at their threshold value. Using Eqs. (73) and
(74), we also perform dynamical simulations to confirm the
steady-state values.

We then proceed to study fluctuations around the steady
state which allows one to calculate measurable output fluctua-
tion spectra [34] and, hence, quantify the quantum correlations
of the system. The linearized equations for the fluctuations are
of the form

dδα = − Āδαdt + B̄dW , (80)

where δα = [δα1,δα
+
1 ,δα2,δα

+
2 , . . . ,δα8,δα

+
8 ]T , B̄ is the

noise matrix of Eq. (74) with the steady-state values inserted,
dW is a vector of independent, real Wiener increments [34],
and Ā is the drift matrix with the steady-state values inserted
and given by

Ā =
(

A1 A2

−(A∗
2)T A3

)
, (81)

where A1 = −γ I6,

A2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−χ1ᾱ6 0 −χ1ᾱ5 0 0 0 0 0

0 −χ1ᾱ
∗
6 0 −χ1ᾱ

∗
5 0 0 0 0

0 0 −χ2ᾱ7 0 −χ2ᾱ6 0 0 0

0 0 0 −χ2ᾱ
∗
7 0 −χ2ᾱ

∗
6 0 0

0 0 0 0 −χ3ᾱ8 0 −χ3ᾱ7 0

0 0 0 0 0 −χ3ᾱ
∗
8 0 −χ3ᾱ

∗
7

−χ4ᾱ8 0 0 0 0 0 −χ4ᾱ5 0

0 −χ4ᾱ
∗
8 0 0 0 0 0 −χ4ᾱ

∗
5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (82)

and

A3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−κ 0 0 χ1ᾱ1 0 0 0 χ4ᾱ4

0 −κ χ2ᾱ
∗
1 0 0 0 χ4ᾱ

∗
4 0

0 χ1ᾱ1 −κ 0 0 χ2ᾱ2 0 0

χ1ᾱ
∗
1 0 0 −κ χ2ᾱ

∗
2 0 0 0

0 0 0 χ2ᾱ2 −κ 0 0 χ3ᾱ3

0 0 χ2ᾱ
∗
2 0 0 −κ χ3ᾱ

∗
3 0

0 χ4ᾱ4 0 0 0 χ3ᾱ3 −κ 0

χ4ᾱ
∗
4 0 0 0 χ3ᾱ

∗
3 0 0 −κ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (83)

Provided the eigenvalues of the drift matrix Ā have no
negative real part, the system is stable and we can treat the
fluctuation equations as describing an Ornstein-Uhlenbeck
process [37]. This allows one to calculate the intracavity
spectral correlation matrix,

S(ω) = ( Ā + iω1)B̄B̄
T ( ĀT − iω1)−1, (84)

and this is related to the measurable output fluctuation
spectra using the standard input-output relations for optical
cavities [38]. Furthermore, it supplies us with all that is
necessary to calculate the measurable extracavity quadripartite
entanglement.

VII. OUTPUT FLUCTUATION SPECTRA

The same inequalities as given in Sec. III in terms of
variances also hold when expressed in terms of the output
spectra, and these are the quantities that can be measured
in experiments. In the following, we use the notation I out

ij (ω)
(i.e., any of I out

56 ,I out
67 ,I out

78 ) to represent the three output spectral
correlations of the same form as the optimized expressions in
Eqs. (6)–(8). In Fig. 4, we plot these three correlations as a
function of frequency for our completely symmetric system for
the below-threshold case (solid line) and the above-threshold
case (dashed line). In both cases, the three correlations are
equal; that is, I out

56 = I out
67 = I out

78 .
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FIG. 4. The output spectral correlations, I out
ij (ω), as a function

of frequency ω (units of κ) corresponding to the quadripartite
entanglement criteria given in Eqs. (21)–(23). The below-threshold
(solid line) and above-threshold (dashed line) cases are shown for
cavity pump amplitudes ε = 0.8εc and ε = 1.2εc, respectively. The
three correlations are equal for each case for the chosen parameters,
which are symmetric with χi = χ , εi = ε, γ = 10, κ = 1, and
χ = 10−2. All quantities plotted here and in the subsequent graph
are dimensionless.

The inequalities are violated both below and above the
threshold, demonstrating quadripartite entanglement. Specif-
ically, the results shown are for the case of the pump field
amplitudes set at ε = 0.8εc and ε = 1.2εc. For these parameter
choices, the largest violation of the VLF entanglement criteria,
and thus the maximum quadripartite entanglement, is for
the low-frequency modes below threshold. In general, for
both cases the largest degree of violation of the inequali-
ties is observed near zero frequency. For large frequencies
I out
ij (ω) → 4, which is the uncorrelated limit for our optimized

expressions.
We also determine the maximum quadripartite entangle-

ment for the same parameters as in Fig. 4, but for a range
of pump field amplitudes on both sides of the oscillation
threshold. This is shown in Fig. 5, where we plot the minimum
value of the output spectra at any frequency, as a function
of ε/εc. As expected [39,40], we observe the maximum
quadripartite entanglement at the critical pumping amplitude,
with the caveat that the linearized fluctuation analysis is
not valid in the immediate vicinity of the threshold. The
fact that a gradual slope is observed below threshold in the
region of maximum entanglement could prove useful for
future experimental realizations of this scheme. It is also
found that quadripartite entanglement persists well above
threshold, with a large violation of the VLF criteria still
present as the pumping is increased above the critical pumping
value. In particular, well above threshold the minimum
of I out

ij (ω) approaches 3. This behavior is also seen in
[39,40], where the equivalent correlations also asymptote to a
finite value.

0 0.5 1 1.5 2
1

1.5

2

2.5

3

3.5

4

ε/εc

m
in

[I
ou

t
ij

(ω
)]

FIG. 5. Maximum quadripartite entanglement as a function of the
ratio of the cavity pumping to the pumping threshold. The cavity
parameters are the same as in Fig. 4, with γ = 10, κ = 1, and
χ = 10−2. Again, all three correlations are equal for these parameters.
It should be stressed that at ε/εc = 1 the validity of the results is
limited as the linearized analysis is no longer valid.

VIII. CONCLUSIONS AND OUTLOOK

We have demonstrated intracavity continous-variable
quadripartite entanglement in quadruply concurrent down-
conversion, both above and below the critical pumping
threshold, using optimized VLF criteria. Above threshold, the
proposed scheme produces a source of bright entangled output
beams. The below-threshold regime provides the greatest
degree of entanglement and a region where this entanglement
could be measured in experiments. One of the advantages of
this type of scheme lies in the number of different regimes that
can be explored by tuning various parameters in experiments.
For example, the pump intensities and coupling strengths can
be tuned and this makes it possible to vary the degree of
entanglement in the system.

Throughout this article, we have studied the properties
of the interaction Hamiltonian, presented the full quantum
equations of motion and performed a linearized fluctuation
analysis. All results indicate that this system is a good candi-
date for the demonstration of quadripartite CV entanglement.
In relation to experimental implementation of the scheme
presented here, stabilizing a single cavity in which four
entangled modes are created may prove preferable in some
applications rather than alternative schemes which rely on
stabilizing and synchronizing multiple OPOs.

Finally, this result could be of further significance in a
similar system where one of the nonlinear couplings is absent.
Such a system may be a candidate for realizing the simplest
four-node cluster state [26,27].
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