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Asymmetric Gaussian harmonic steering in second-harmonic generation
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Intracavity second-harmonic generation is one of the simplest of the quantum optical processes and is well
within the expertise of most optical laboratories. It is well understood and characterized, both theoretically and
experimentally. We show that it can be a source of continuous-variable asymmetric Gaussian harmonic steering
with fields which have a coherent excitation, hence combining the important effects of harmonic entanglement
and asymmetric steering in one easily controllable device, adjustable by the simple means of tuning the cavity
loss rates at the fundamental and harmonic frequencies. We find that whether quantum steering is available
via the standard measurements of the Einstein-Podolsky-Rosen correlations can depend on which quadrature
measurements are inferred from output spectral measurements of the fundamental and the harmonic. Altering
the ratios of the cavity loss rates can be used to tune the regions where symmetric steering is available, with
the results becoming asymmetric over all frequencies as the cavity damping at the fundamental frequency
becomes significantly greater than at the harmonic. This asymmetry and its functional dependence on frequency
is a potential new tool for experimental quantum information science, with possible utility for quantum key
distribution. Although we show the effect here for Gaussian measurements of the quadratures, and cannot rule
out a return of the steering symmetry for some class of non-Gaussian measurements, we note here that the system
obeys Gaussian statistics in the operating regime investigated and Gaussian inference is at least as accurate as
any other method for calculating the necessary correlations. Perhaps most importantly, this system is simpler
than any other methods we are aware of which have been used or proposed to create asymmetric steering.
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Second-harmonic generation (SHG) is one of the simplest
phenomena of nonlinear optics [1] and has long been known
as a source of quantum states of the electromagnetic field.
Quantum entanglement in terms of the Einstein-Podolsky-
Rosen (EPR) paradox [2], also called steering by Schrödinger
[3,4], is one of the central features which differentiates
quantum mechanics from classical physics. It has previously
been shown that SHG can be used to produce entangled
fields at the two frequencies [5,6], later called “harmonic
entanglement” by Grosse et al. [7].

EPR expressed the original paradox in terms of position and
momentum measurements. The essential step in their argument
was to introduce correlated (entangled) states of at least two
particles which persisted when the particles become spatially
separated. According to EPR, depending on which property
of one group of particles that was measured, a prediction with
some certainty of the values of physical quantities of the other
group of particles could be made. If these properties were
represented by noncommuting operators (such as position
and momentum), the Heisenberg uncertainty principle could
seemingly be violated. The EPR conclusion was therefore that
the description of physical reality given by quantum mechanics
is not complete.

In this Rapid Communication we use the continuous-
variable (CV) characterization of EPR first put on a mathemat-
ical footing by Reid [8], using quadrature amplitudes, which
have the same mathematical properties as position and momen-
tum. Reid proposed an optical demonstration of the paradox
using nondegenerate parametric amplification, subsequently
realized experimentally by Ou et al. [9]. It is important to note
here that this result was the first experimental demonstration
of continuous-variable quantum steering, although the authors
did not use that terminology. Later work on CV entanglement

saw the introduction of what have become known as the
Duane-Simon criteria [10,11], which provide easily measur-
able correlations to detect bipartite entanglement, in terms of
quadrature variances. More recent work [12–14] has revisited
the early contributions of Schrödinger, putting them on a firm
mathematical footing in the modern day language of quantum
information theory, and reintroducing the term “steering.”
Their work defined a ranking of nonclassicality, with states
violating Bell inequalities being the most nonclassical, and
these being a subset of states demonstrating the EPR paradox.
In the CV case, these themselves were shown to be a subset
of states which demonstrated entanglement according to the
Duan-Simon inequalities.

Wiseman et al. also noted that the EPR inequalities as
defined by Reid had a built-in asymmetry and raised the
question of whether states exhibiting asymmetric steering
could be manufactured in the laboratory. In the tripartite
case and with a restriction to Gaussian measurements, such
states had already been predicted and analyzed [15], using a
three-mode extension of the original Reid criteria [16]. In the
bipartite case, they have subsequently been predicted in the
process of intracavity sum-frequency generation [17], where
bichromatic asymmetric steering was analyzed theoretically.
Further work entailed such states being predicted from the in-
tracavity nonlinear coupler [18] and measured experimentally
using parametric downconversion [19]. We note here that sum-
frequency generation does not have the same experimental
history as SHG in quantum optics, mainly having been used
for spectroscopy, and has quite different stability properties.
Recent works have developed entropic functions for the
detection of steering, which show some promise for further
investigations of possible asymmetry [20,21]. In this Rapid
Communication we will show that the relatively simple system
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of intracavity second-harmonic generation is a good candidate
for the realization of asymmetric harmonic steering, and that
all that is required to see this are different cavity loss rates at
each of the fundamental and harmonic frequencies.

The Hamiltonian for the intracavity process which couples
electromagnetic fields at frequencies ω and 2ω is written in
the rotating wave approximation as [22]

H = Hint + Hpump + Hbath, (1)

where the interaction Hamiltonian is

Hint = ih̄
κ

2
(â2b̂† − â† 2b̂), (2)

the pumping Hamiltonian is

Hpump = ih̄(εâ† − ε∗â), (3)

and the bath Hamiltonian is

Hbath = h̄(�̂†
aâ + �̂aâ

† + �̂
†
bb̂ + �̂bb̂

†). (4)

In the above, κ represents the effective χ (2) coupling strength
between the two modes, with â being the bosonic annihilation
operator for excitations at frequency ω and b̂ annihilating
excitations at frequency 2ω. The classical amplitude of the
pump is ε and the �̂a,b annihilate bath quanta.

Following the standard procedures and making the Markov
approximation for the baths [22,23], we map the Hamiltonian
onto a master equation, followed by a Fokker-Planck equation
in the positive-P representation [24], making the correspon-
dences (â,â†,b̂,b̂†) ↔ (α,α+,β,β+). We subsequently find the
stochastic differential equations [25] for the four positive-P
variables,

dα

dt
= ε − γaα + κα+β +

√
κβ η1(t),

dα+

dt
= ε∗ − γaα

+ + καβ+ +
√

κβ+ η2(t),

dβ

dt
= −γbβ − κ

2
α2,

dβ+

dt
= −γbβ

+ − κ

2
α+ 2. (5)

In these equations the ηi are real Gaussian noise terms with
the correlations ηi(t)ηj (t ′) = δij δ(t − t ′). As always with the
positive-P, the pairs of field variables (α and α+, for example)
are not complex conjugate except in the mean of a large number
of integrated trajectories.

In order to solve the above system of equations we may
either integrate them numerically or, in the region where this
is applicable, use a linearized fluctuation analysis around
the classical steady-state solutions. We follow the second
option here, since this allows us to treat the system as an
Ornstein-Uhlenbeck process [25], allowing for particularly
easy calculation of the output spectral correlations. It is well
known that a Hopf bifurcation exists at a critical pumping
strength, εc = (1/κ) (γb + 2γa)

√
2γb(γa + γb) [26,27], above

which the system enters the self-pulsing regime. A linearized
fluctuation analysis can be performed below this critical point.
To begin calculating the output spectral quantities required,
we write the positive-P variables as the sum of a classical,
mean value steady-state part and a fluctuations operator, e.g.,
α = αss + δα, where αss = α in the steady state. We can now

write an equation of motion for the vector of fluctuation
operators, δX̂ = [

δα,δα+,δβ,δβ+]T
,

d

dt
δX̂ = −AδX̂ + B dζ, (6)

where A is the steady-state drift matrix, B is a matrix of the
steady-state coefficients for the fluctuations, and dζ is a vector
of Wiener increments. As long as the eigenvalues of A do not
have a negative real part, the solutions will be stable, and we
can find the intracavity spectral correlations via

S(ω) = (A + iω1)−1D(AT − iω1)−1, (7)

where D = BBT. These are then easily converted into spectral
results outside the cavity using the input-output relations of
Gardiner and Collett [28]. For the results we present here, we
use γa = 1 and κ = 0.01, with varying ε and γb.

Wiseman and others [12,13] have shown that the violation
of the quadrature inequalities defined by Reid [8] in her EPR
work also demonstrates that the phenomenon of steering is
present in a continuous-variable system. As these are the
inequalities we use, we will outline them here.

We begin by defining the two quadratures of each electro-
magnetic field as

X̂a = â + â†, Ŷa = −i(â − â†), (8)

with similar definitions for the harmonic field, using b̂ and b̂†.
The Heisenberg uncertainty principle then requires that

V (X̂a)V (Ŷa) � 1, V (X̂b)V (Ŷb) � 1, (9)

where variances are defined such that V (A) = 〈A2〉 − 〈A〉2

and V (A,B) = 〈AB〉 − 〈A〉〈B〉. The procedure given by Reid
[8] then allows us to define inferred variances which basically
come from Gaussian best inference of the expectation values
of either the X̂ or Ŷ quadratures at one frequency from
measurements on the quadratures at the other frequency. By
measuring the values at the fundamental we may infer values
at the harmonic by

V inf(X̂b) = V (X̂b) − [V (X̂a,X̂b)]2

V (X̂a)
,

V inf(Ŷb) = V (Ŷb) − [V (Ŷa,Ŷb)]2

V (Ŷa)
, (10)

while an inference of the fundamental via measurements at the
harmonic leads to

V inf(X̂a) = V (X̂a) − [V (X̂a,X̂b)]2

V (X̂b)
,

V inf(Ŷa) = V (Ŷa) − [V (Ŷa,Ŷb)]2

V (Ŷb)
. (11)

The EPR paradox and hence steering are demonstrated
whenever

V inf(X̂a)V inf(Ŷa) < 1 (12)

or

V inf(X̂b)V inf(Ŷb) < 1. (13)

We stress here that demonstration of these inequalities does
not actually violate the Heisenberg uncertainty principle,

051802-2



RAPID COMMUNICATIONS

ASYMMETRIC GAUSSIAN HARMONIC STEERING IN . . . PHYSICAL REVIEW A 88, 051802(R) (2013)

−10 −5 0 5 10
0.5

0.6

0.7

0.8

0.9

1

ω (units of γ
1
)

E
P

R

FIG. 1. (Color online) EPR inferred from fundamental (con-
tinuous line) and harmonic (dashed-dotted line) for γb = γa and
ε = 0.6εc. The quantities plotted in this and other graphs are
dimensionless.

but is rather a demonstration of the nonlocality of quantum
mechanics, as has been described in detail elsewhere. In the
case of symmetric steering, both these inequalities would be
violated equally by a system, with the actual subsystem being
measured being unimportant. However, Wiseman et al. [12]
raised the question as to the possibility of asymmetric steering,
where the actual subsystem being measured would be crucial to
the results. As stated above, there have been several predictions
of this asymmetry for Gaussian measurements [15,17,18],
and an experimental demonstration [19]. We will now show
that it is also a feature of the simple process of intracavity
second-harmonic generation.

In intracavity SHG, an obvious and simple source of
asymmetry can be introduced by having different loss rates
at each frequency for the output mirror. When the mirrors
have loss rates such that γb > γa/2, we find that steering is
possible regardless of which quadratures we use for inference,
as shown in Fig. 1. What is apparent, and not seen in totally
symmetric systems such as degenerate downconversion, is that
the inferred spectral products are not equal, with steering being
seen from measurements of the fundamental for frequencies
at which it is not seen for measurements of the harmonic. This
already allows for a certain degree of asymmetric steering if
we restrict ourselves to the appropriate frequency bands.

However, what we really require is an asymmetry which
extends across all frequencies, and we find this as the loss rate
at the harmonic decreases. In Fig. 2 we show the criteria for
the same parameters as in Fig. 1, with the only change being to
the high-frequency cavity loss rate. We readily see that infer-
ence using the fundamental allows steering, whereas inference
using the harmonic quadratures cannot be used for steering at
any frequency. In Fig. 3 we show the presence or absence
of asymmetric Gaussian steering across all frequencies as a
function of γb/γa and ε/εc, with zero on the vertical axis
denoting the presence of total asymmetry and one denoting
that there is at least some frequency for which the steering
is symmetric. We see that the main criterion is the necessity
that the harmonic loss rate be less than the fundamental loss
rate, which is experimentally attainable through engineering
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FIG. 2. (Color online) EPR inferred from fundamental (contin-
uous line) and harmonic (dashed-dotted line) for γb = 0.25γa and
ε = 0.6εc.

of the cavity mirrors. This is simpler than the requirements to
see asymmetric steering in the nonlinear coupler, previously
analyzed in Ref. [18]. As stated in our work on the nonlinear
coupler, it was necessary to check across all quadrature angles
in that system, since the χ (3) component rotates the Wigner
function of the light in quadrature space, but for a resonant
χ (2) system, the violation of the inequalities is greatest for the
standard quadrature definitions [29]. We have checked this and
it is indeed the case here.

In conclusion, we have shown that asymmetric Gaussian
harmonic steering is available in the simple and well-
characterized system of intracavity second-harmonic genera-
tion. Importantly, it becomes available by the simple expedient
of changing the ratio of the mirror losses at the two frequencies.
The entangled outputs are also not squeezed vacuum, as in
below threshold downconversion, but have a bright coherent
excitation. As well as being of interest from a fundamental
point of view, this effect is expected to be of use in quantum
communications and quantum cryptography, especially for
quantum key distribution [30]. It adds a further tool, and
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FIG. 3. (Color online) The presence of asymmetric Gaussian
steering at all frequencies is shown here by zero on the vertical axis,
as a function of γb/γa and ε/εc. One on the vertical axis shows that
there is at least some frequency for which the steering is symmetric.
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one with which many optical laboratories are familiar, to the
techniques available for investigation and use of fundamental
quantum mechanics in emerging technologies.

This research was supported by the Australian Research
Council under the Future Fellowships Program (Grant No.
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