We study the isospin dynamics in fragment formation within the framework of
an analytical model based on the spinodal decomposition scenario. We calculate
the probability to obtain fragments with given charge and neutron number,
focussing on the derivation of the width of the isotopic distributions. Within
our approach this is determined by the dispersion of N/Z among the leading
unstable modes, due to the competition between Coulomb and symmetry energy
effects, and by isovector-like fluctuations present in the matter that
undergoes the spinodal decomposition. Hence the widths exhibit a clear
dependence on the properties of the Equation of State. By comparing two systems
with different values of the charge asymmetry we find that the isotopic
distributions reproduce an isoscaling relationship.Comment: 18 RevTex4 pages, 6 eps figure