178 research outputs found

    Development of Gas-phase Pre-separation Tools for Higher Sensitivity in the Molecular Characterization of Biodiesel Mixtures

    Get PDF
    The analysis of complex mixtures without pre-fractionation is analytically challenged by the high number of chemical components and their wide concentration range. In addition, many chemical species are difficult to ionize and charge competition may occur prior to mass analyses, thus limiting the detection capabilities of any analytical instrument. In the present work, we show the advantages of gas-phase separation prior to high resolution mass spectrometry analysis. In particular, two biodiesel fuel standards (soy and animal based) were analyzed using a novel analytical method featuring gas chromatographic separation prior to atmospheric pressure laser ionization (APLI). Results showed that gas- phase separation allows for 57 % and 39 % increases in the number of compounds detected from the soy-based and animal-based samples, respectively, when compared with direct infusion. Results also suggest that the molecular ion signal increase is achieved through the reduction of the ion suppression within the plume of the spray- based atmospheric pressure ionization sources (also valid for ESI, APCI, APPI sources). Accurate mass measurements (? \u3c 0.5 ppm) via Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) enabled unambiguous identification of over 2,000 molecular ions per sample in the m/z=150-550 range. Inspection of the Kendrick and van Krevelen plots revealed that ion suppression when using APLI appears to be mostly concentration dependent regardless of the chemical class; that is, it does not depend on aromaticity, polarizability, or mass range

    Online solid phase extraction liquid chromatography tandem mass spectrometry (SPE-LC-MS/MS) method for the determination of sucralose in reclaimed and drinking waters and its photo degradation in natural waters from South Florida

    Get PDF
    Background Sucralose has gained popularity as a low calorie artificial sweetener worldwide. Due to its high stability and persistence, sucralose has shown widespread occurrence in environmental waters, at concentrations that could reach up to several μg/L. Previous studies have used time consuming sample preparation methods (offline solid phase extraction/derivatization) or methods with rather high detection limits (direct injection) for sucralose analysis. This study described a faster and sensitive analytical method for the determination of sucralose in environmental samples. Results An online SPE-LC–MS/MS method was developed, being capable to quantify sucralose in 12 minutes using only 10 mL of sample, with method detection limits (MDLs) of 4.5 ng/L, 8.5 ng/L and 45 ng/L for deionized water, drinking and reclaimed waters (1:10 diluted with deionized water), respectively. Sucralose was detected in 82% of the reclaimed water samples at concentrations reaching up to 18 μg/L. The monthly average for a period of one year was 9.1 ± 2.9 μg/L. The calculated mass loads per capita of sucralose discharged through WWTP effluents based on the concentrations detected in wastewaters in the U. S. is 5.0 mg/day/person. As expected, the concentrations observed in drinking water were much lower but still relevant reaching as high as 465 ng/L. In order to evaluate the stability of sucralose, photodegradation experiments were performed in natural waters. Significant photodegradation of sucralose was observed only in freshwater at 254 nm. Minimal degradation (\u3c20%) was observed for all matrices under more natural conditions (350 nm or solar simulator). The only photolysis product of sucralose identified by high resolution mass spectrometry was a de-chlorinated molecule at m/z 362.0535, with molecular formula C12H20Cl2O8. Conclusions Online SPE LC-APCI/MS/MS developed in the study was applied to more than 100 environmental samples. Sucralose was frequently detected (\u3e80%) indicating that the conventional treatment process employed in the sewage treatment plants is not efficient for its removal. Detection of sucralose in drinking waters suggests potential contamination of surface and ground waters sources with anthropogenic wastewater streams. Its high resistance to photodegradation, minimal sorption and high solubility indicate that sucralose could be a good tracer of anthropogenic wastewater intrusion into the environment

    Plasma levels of immunosuppressive mediators during cardiopulmonary bypass

    Get PDF
    The aim of this study was to evaluate plasma levels of two mediators with immunosuppressive properties, complement fraction C3a (C3a) and transforming growth factor-β1 (TGF-β1), during extracorporeal circulation. The proliferation index after phytohaemagglutinin (PHA) stimulation of isolated peripheral blood mononuclear cells was also investigated. Sixteen patients undergoing hypothermic (n = 8, group 1) and normothermic (n = 8, group 2) cardiopulmormry bypass (CPB) were enrolled in this study. As a control, we evaluated four patients undergoing thoracovascular operations without CPB. Blood samples were collected before CPB but after anaesthesia, every 30 min during CPB, at the end of CPB and 10 min after protamine administration. Both C3a and TGF-β1 increased significantly during CPB and after protamine administration in the hypothermic as well as the normothermic group. In the latter case the increase of C3a and TGF-β1, although more prominent, was not significantl higher than in the former group. Conversely, the proliferation, index of peripheral mononuclear cells had already decreased 30 min after CPB was started and remained depressed throughout the CPB time. These results suggest a possible role of C3a and TGF-β1 in the immunological changes occurring during extracorporeal circulation

    XI Expocom: as respostas ao desafio de fazer diferente

    Get PDF
    registr

    Fate of Irgarol 1051, diuron and their main metabolites in two UK marine systems after restrictions in antifouling paints

    Get PDF
    Two major antifouling biocides used worldwide, Irgarol 1051 and diuron, and their degradation products in Shoreham Harbour and Brighton Marina, UK were studied during 2003-2004. The highest concentrations of Irgarol 1051 were 136 and 102 ng L(-1) in water and 40 and 49 ng g(-1) dry weight in sediments for Shoreham Harbour and Brighton Marina, respectively. As the degradation product of Irgarol 1051, M1 was also widespread, with the highest concentration of 59 ng L(-1) in water and 23 ng g(-1) in sediments in Shoreham Harbour, and 37 ng L(-1) in water and 5.6 ng g(-1) in sediments in Brighton Marina. The target compounds showed enhanced concentrations during the boating season (May-July), when boats were being re-painted (January-February), and where the density of pleasure crafts was high. Overall, the concentration of Irgarol 1051 decreased significantly from late 2000 to early 2004, indicating the effectiveness of controlling its concentrations in the marine environment following restricted use. Diuron was only detected in 14% of water samples, and mostly absent from sediment samples

    Systemic capillary leak syndrome : is methylene blue the silver bullet?

    Get PDF
    Background. Systemic capillary leak syndrome (SCLS) is a rare disorder characterized by unexplained, recurrent episodes of transient, abrupt increase in endothelial permeability, leading to severe hypotension, generalized edema, and hemoconcentration. Case Report. We report the case of a patient suffering from systemic capillary leak syndrome and present a possible interpretation of the pathophysiology of this condition. Besides the classical triad of hypotension, edema, and hemoconcentration, we recorded increased levels of methemoglobin, an index of NO overproduction. We present a possible interpretation of the pathophysiology of this condition based on the fast and complete reversal of symptoms after methylene blue administration (which opposes NO-induced effects) and speculate that increased NO levels could be implicated in the pathophysiology of the capillary leak phase. Why should an emergency physician be aware of this? The safety of this treatment and its fluid- and cathecolamine-sparing effect deserve consideration and further research

    Oxygenation inhibits the physiological tissue-protecting mechanism and thereby exacerbates acute inflammatory lung injury

    Get PDF
    Acute respiratory distress syndrome (ARDS) usually requires symptomatic supportive therapy by intubation and mechanical ventilation with the supplemental use of high oxygen concentrations. Although oxygen therapy represents a life-saving measure, the recent discovery of a critical tissue-protecting mechanism predicts that administration of oxygen to ARDS patients with uncontrolled pulmonary inflammation also may have dangerous side effects. Oxygenation may weaken the local tissue hypoxia-driven and adenosine A2A receptor (A2AR)-mediated anti-inflammatory mechanism and thereby further exacerbate lung injury. Here we report experiments with wild-type and adenosine A2AR-deficient mice that confirm the predicted effects of oxygen. These results also suggest the possibility of iatrogenic exacerbation of acute lung injury upon oxygen administration due to the oxygenation-associated elimination of A2AR-mediated lung tissue-protecting pathway. We show that this potential complication of clinically widely used oxygenation procedures could be completely prevented by intratracheal injection of a selective A2AR agonist to compensate for the oxygenation-related loss of the lung tissue-protecting endogenous adenosine. The identification of a major iatrogenic complication of oxygen therapy in conditions of acute lung inflammation attracts attention to the need for clinical and epidemiological studies of ARDS patients who require oxygen therapy. It is proposed that oxygen therapy in patients with ARDS and other causes of lung inflammation should be combined with anti-inflammatory measures, e.g., with inhalative application of A2AR agonists. The reported observations may also answer the long-standing question as to why the lungs are the most susceptible to inflammatory injury and why lung failure usually precedes multiple organ failure

    Polymorphism of the Fractalkine Receptor CX3CR1 and Systemic Sclerosis-associated Pulmonary Arterial Hypertension

    Get PDF
    Fractalkine (FKN) and its receptor CX3CR1 are critical mediators in the vascular and tissue damage of several chronic diseases, including systemic sclerosis (SSc) and pulmonary arterial hypertension (PAH). Interestingly, the V249I and T280M genetic polymorphisms influence CX3CR1 expression and function. We investigated whether these polymorphisms are associated with PAH secondary to SSc. CX3CR1 genotypes were analyzed by PCR and sequencing in 76 patients with limited SSc and 204 healthy controls. PAH was defined by colorDoppler echocardiography. Homozygosity for 249II as well as the combined presence of 249II and 280MM were significantly more frequent in patients with SSc compared to controls (17 vs 6%, p = 0.0034 and 5 vs 1%, p = 0.0027, respectively). The 249I and 280M alleles were associated with PAH (odd ratio [OR] 2.2, 95% confidence interval [CI] 1.01-4.75, p = 0.028 and OR 7.37, 95%CI: 2.45-24.60, p = 0.0001, respectively). In conclusion, the increased frequencies of 249I and 280M CX3CR1 alleles in a subgroup of patients with SSc-associated PAH suggest a role for the fractalkine system in the pathogenesis of this condition. Further, the 249I allele might be associated with susceptibility to SSc

    Oil Hydrocarbon Degradation by Caspian Sea Microbial Communities

    Get PDF
    The Caspian Sea, which is the largest landlocked body of water on the planet, receives substantial annual hydrocarbon input from anthropogenic sources (e.g., industry, agriculture, oil exploration, and extraction) and natural sources (e.g., mud volcanoes and oil seeps). The Caspian Sea also receives substantial amounts of runoff from agricultural and municipal sources, containing nutrients that have caused eutrophication and subsequent hypoxia in the deep, cold waters. The effect of decreasing oxygen saturation and cold temperatures on oil hydrocarbon biodegradation by a microbial community is not well characterized. The purpose of this study was to investigate the effect of oxic and anoxic conditions on oil hydrocarbon biodegradation at cold temperatures by microbial communities derived from the Caspian Sea. Water samples were collected from the Caspian Sea for study in experimental microcosms. Major taxonomic orders observed in the ambient water samples included Flavobacteriales, Actinomycetales, and Oceanospirillales. Microcosms were inoculated with microbial communities from the deepest waters and amended with oil hydrocarbons for 17 days. Hydrocarbon degradation and shifts in microbial community structure were measured. Surprisingly, oil hydrocarbon biodegradation under anoxic conditions exceeded that under oxic conditions; this was particularly evident in the degradation of aromatic hydrocarbons. Important microbial taxa associated with the anoxic microcosms included known oil degraders such as Oceanospirillaceae. This study provides knowledge about the ambient community structure of the Caspian Sea, which serves as an important reference point for future studies. Furthermore, this may be the first report in which anaerobic biodegradation of oil hydrocarbons exceeds aerobic biodegradation
    corecore