62 research outputs found

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program

    Specific ion channels contribute to key elements of pathology during secondary degeneration following neurotrauma

    Get PDF
    Background: Following partial injury to the central nervous system, cells beyond the initial injury site undergo secondary degeneration, exacerbating loss of neurons, compact myelin and function. Changes in Ca 2+ flux are associated with metabolic and structural changes, but it is not yet clear how flux through specific ion channels contributes to the various pathologies. Here, partial optic nerve transection in adult female rats was used to model secondary degeneration. Treatment with combinations of three ion channel inhibitors was used as a tool to investigate which elements of oxidative and structural damage related to long term functional outcomes. The inhibitors employed were the voltage gated Ca 2+ channel inhibitor Lomerizine (Lom), the Ca 2+ permeable AMPA receptor inhibitor YM872 and the P2X 7 receptor inhibitor oxATP. Results: Following partial optic nerve transection, hyper-phosphorylation of Tau and acetylated tubulin immunoreactivity were increased, and Nogo-A immunoreactivity was decreased, indicating that axonal changes occurred acutely. All combinations of ion channel inhibitors reduced hyper-phosphorylation of Tau and increased Nogo-A immunoreactivity at day 3 after injury. However, only Lom/oxATP or all three inhibitors in combination significantly reduced acetylated tubulin immunoreactivity. Most combinations of ion channel inhibitors were effective in restoring the lengths of the paranode and the paranodal gap, indicative of the length of the node of Ranvier, following injury. However, only all three inhibitors in combination restored to normal Ankyrin G length at the node of Ranvier. Similarly, HNE immunoreactivity and loss of oligodendrocyte precursor cells were only limited by treatment with all three ion channel inhibitors in combination. Conclusions: Data indicate that inhibiting any of a range of ion channels preserves certain elements of axon and node structure and limits some oxidative damage following injury, whereas ionic flux through all three channels must be inhibited to prevent lipid peroxidation and preserve Ankyrin G distribution and OPCs

    Messenger RNA Oxidation Occurs Early in Disease Pathogenesis and Promotes Motor Neuron Degeneration in ALS

    Get PDF
    BACKGROUND: Accumulating evidence indicates that RNA oxidation is involved in a wide variety of neurological diseases and may be associated with neuronal deterioration during the process of neurodegeneration. However, previous studies were done in postmortem tissues or cultured neurons. Here, we used transgenic mice to demonstrate the role of RNA oxidation in the process of neurodegeneration. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrated that messenger RNA (mRNA) oxidation is a common feature in amyotrophic lateral sclerosis (ALS) patients as well as in many different transgenic mice expressing familial ALS-linked mutant copper-zinc superoxide dismutase (SOD1). In mutant SOD1 mice, increased mRNA oxidation primarily occurs in the motor neurons and oligodendrocytes of the spinal cord at an early, pre-symptomatic stage. Identification of oxidized mRNA species revealed that some species are more vulnerable to oxidative damage, and importantly, many oxidized mRNA species have been implicated in the pathogenesis of ALS. Oxidative modification of mRNA causes reduced protein expression. Reduced mRNA oxidation by vitamin E restores protein expression and partially protects motor neurons. CONCLUSION/SIGNIFICANCE: These findings suggest that mRNA oxidation is an early event associated with motor neuron deterioration in ALS, and may be also a common early event preceding neuron degeneration in other neurological diseases

    Elevation of the antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline: a blood pressure-independent beneficial effect of angiotensin I-converting enzyme inhibitors

    Get PDF
    Blockade of the renin-angiotensin system (RAS) is well recognized as an essential therapy in hypertensive, heart, and kidney diseases. There are several classes of drugs that block the RAS; these drugs are known to exhibit antifibrotic action. An analysis of the molecular mechanisms of action for these drugs can reveal potential differences in their antifibrotic roles. In this review, we discuss the antifibrotic action of RAS blockade with an emphasis on the potential importance of angiotensin I-converting enzyme (ACE) inhibition associated with the antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP)

    Zen and the Art of Living Mindfully: The Health-Enhancing Potential of Zen Aesthetics

    Get PDF
    Amidst the burgeoning enthusiasm for mindfulness in the West, there is a concern that the largely secular ‘de-contextualized’ way in which it is being harnessed is denuding it of its potential to improve health and well-being. As such, efforts are underway to ‘re-contextualize’ mindfulness, explicitly drawing on the wider framework of Buddhist ideas and practices in which it was initially developed. This paper aims to contribute to this, doing so by focusing on Zen Buddhism, and in particular on Zen aesthetic principles. The article concentrates on the seven principles identified by Hisamatsu (1971) in his classic text Zen and the Fine Arts: kanso (simplicity); fukinsei (asymmetry); koko (austere sublimity); shizen (naturalness); daisuzoku (freedom from routine); sei-jaku (tranquillity); and yūgen (profound grace). The presence of these principles in works of art is seen as reflecting and communicating insights that are central to Buddhism, such as non-attachment. Moreover, these principles do not only apply to the creation and appreciation of art, but have clear applications for treating health-related issues, and improving quality of life more generally. This paper makes the case that embodying these principles in their lives can help people enhance their psychosomatic well-being, and come to a truer understanding of the essence of mindful living

    Dissection of mammalian orthoreovirus µ2 reveals a self-associative domain required for binding to microtubules but not to factory matrix protein µNS

    Get PDF
    Mammalian orthoreovirus protein μ2 is a component of the viral core particle. Its activities include RNA binding and hydrolysis of the γ-phosphate from NTPs and RNA 5´-termini, suggesting roles as a cofactor for the viral RNA-dependent RNA polymerase, λ3, first enzyme in 5´-capping of viral plus-strand RNAs, and/or prohibitory of RNA-5´-triphosphate-activated antiviral signaling. Within infected cells, μ2 also contributes to viral factories, cytoplasmic structures in which genome replication and particle assembly occur. By associating with both microtubules (MTs) and viral factory matrix protein μNS, μ2 can anchor the factories to MTs, the full effects of which remain unknown. In this study, a protease-hypersensitive region allowed μ2 to be dissected into two large fragments corresponding to residues 1–282 and 283–736. Fusions with enhanced green fluorescent protein revealed that these amino- and carboxyl-terminal regions of μ2 associate in cells with either MTs or μNS, respectively. More exhaustive deletion analysis defined μ2 residues 1–325 as the minimal contiguous region that associates with MTs in the absence of the self-associating tag. A region involved in μ2 self-association was mapped to residues 283–325, and self-association involving this region was essential for MT-association as well. Likewise, we mapped that μNS-binding site in μ2 relates to residues 290–453 which is independent of μ2 self-association. These findings suggest that μ2 monomers or oligomers can bind to MTs and μNS, but that self-association involving μ2 residues 283–325 is specifically relevant for MT-association during viral factories formation

    Meditation and cognitive ageing: The role of mindfulness meditation in building cognitive reserve

    Get PDF
    Mindfulness-related meditation practices engage various cognitive skills including the ability to focus and sustain attention, which in itself requires several interacting attentional sub-functions. There is increasing behavioural and neuroscientific evidence that mindfulness meditation improves these functions and associated neural processes. More so than other cognitive training programmes, the effects of meditation appear to generalise to other cognitive tasks, thus demonstrating far transfer effects. As these attentional functions have been linked to age-related cognitive decline, there is growing interest in the question whether meditation can slow-down or even prevent such decline. The cognitive reserve hypothesis builds on evidence that various lifestyle factors can lead to better cognitive performance in older age than would be predicted by the existing degree of brain pathology. We argue that mindfulness meditation, as a combination of brain network and brain state training, may increase cognitive reserve capacity and may mitigate age-related declines in cognitive functions. We consider available direct and indirect evidence from the perspective of cognitive reserve theory. The limited available evidence suggests that MM may enhance cognitive reserve capacity directly through the repeated activation of attentional functions and of the multiple demand system and indirectly through the improvement of physiological mechanisms associated with stress and immune function. The article concludes with outlining research strategies for addressing underlying empirical questions in more substantial ways

    Towards automated digital building model generation from floorplans and on-site images

    No full text
    Digitalization of buildings has become increasingly relevant for processes such as construction or refurbishing. However, the lack of availability of digital building models is a common problem. In many cases, only printed floorplans and photos of the interior of a building are available. We propose a system to automatically generate enriched digital models from this data, consisting of two AI modules: one for 3D model reconstruction from 2D plans and one for 6D localization of images taken within a building in the corresponding 3D model. Such a model can facilitate tasks such as monitoring of the condition of a building or defects of its components. We demonstrate this pipeline using a real-world building, from which a plan and pictures of a floor are available, and show that good results can be achieved, with potential to greatly reduce the human effort normally required to create digital twins of buildings
    corecore