13 research outputs found
Porifera Lectins: diversity, physiological roles and biotechnological potential
An overview on the diversity of 39 lectins from the phylum Porifera is presented, including 38 lectins, which were identified from the class of demosponges, and one lectin from the class of hexactinellida. Their purification from crude extracts was mainly performed by using affinity chromatography and gel filtration techniques. Other protocols were also developed in order to collect and study sponge lectins, including screening of sponge genomes and expression in heterologous bacterial systems. The characterization of the lectins was performed by Edman degradation or mass spectrometry. Regarding their physiological roles, sponge lectins showed to be involved in morphogenesis and cell interaction, biomineralization and spiculogenesis, as well as host defense mechanisms and potentially in the association between the sponge and its microorganisms. In addition, these lectins exhibited a broad range of bioactivities, including modulation of inflammatory response, antimicrobial and cytotoxic activities, as well as anticancer and neuromodulatory activity. In view of their potential pharmacological applications, sponge lectins constitute promising molecules of biotechnological interest
Cellular Effects of Bacterial N-3-Oxo-Dodecanoyl-L-Homoserine Lactone on the Sponge Suberites domuncula (Olivi, 1792): Insights into an Intimate Inter-Kingdom Dialogue.
International audienceSponges and bacteria have lived together in complex consortia for 700 million years. As filter feeders, sponges prey on bacteria. Nevertheless, some bacteria are associated with sponges in symbiotic relationships. To enable this association, sponges and bacteria are likely to have developed molecular communication systems. These may include molecules such as N-acyl-L-homoserine lactones, produced by Gram-negative bacteria also within sponges. In this study, we examined the role of N-3-oxododecanoyl-L-homoserine lactone (3-oxo-C12-HSL) on the expression of immune and apoptotic genes of the host sponge Suberites domuncula. This molecule seemed to inhibit the sponge innate immune system through a decrease of the expression of genes coding for proteins sensing the bacterial membrane: a Toll-Like Receptor and a Toll-like Receptor Associated Factor 6 and for an anti-bacterial perforin-like molecule. The expression of the pro-apoptotic caspase-like 3/7 gene decreased as well, whereas the level of mRNA of anti-apoptotic genes Bcl-2 Homolog Proteins did not change. Then, we demonstrated the differential expression of proteins in presence of this 3-oxo-C12-HSL using 3D sponge cell cultures. Proteins involved in the first steps of the endocytosis process were highlighted using the 2D electrophoresis protein separation and the MALDI-TOF/TOF protein characterization: α and β subunits of the lysosomal ATPase, a cognin, cofilins-related proteins and cytoskeleton proteins actin, α tubulin and α actinin. The genetic expression of some of these proteins was subsequently followed. We propose that the 3-oxo-C12-HSL may participate in the tolerance of the sponge apoptotic and immune systems towards the presence of bacteria. Besides, the sponge may sense the 3-oxo-C12-HSL as a molecular evidence of the bacterial presence and/or density in order to regulate the populations of symbiotic bacteria in the sponge. This study is the first report of a bacterial secreted molecule acting on sponge cells and regulating the symbiotic relationship
Lipopolysaccharides from Commensal and Opportunistic Bacteria: Characterization and Response of the Immune System of the Host Sponge Suberites domuncula
Marine sponges harbor a rich bacterioflora with which they maintain close relationships. However, the way these animals make the distinction between bacteria which are consumed to meet their metabolic needs and opportunistic and commensal bacteria which are hosted is not elucidated. Among the elements participating in this discrimination, bacterial cell wall components such as lipopolysaccharides (LPS) could play a role. In the present study, we investigated the LPS chemical structure of two bacteria associated with the sponge Suberites domuncula: a commensal Endozoicomonas sp. and an opportunistic Pseudoalteromonas sp. Electrophoretic patterns indicated different LPS structures for these bacteria. The immunomodulatory lipid A was isolated after mild acetic acid hydrolysis. The electrospray ionization ion-trap mass spectra revealed monophosphorylated molecules corresponding to tetra- and pentaacylated structures with common structural features between the two strains. Despite peculiar structural characteristics, none of these two LPS influenced the expression of the macrophage-expressed gene S. domuncula unlike the Escherichia coli ones. Further research will have to include a larger number of genes to understand how this animal can distinguish between LPS with resembling structures and discriminate between bacteria associated with it
The Challenge of the Sponge Suberites domuncula (Olivi, 1792) in the Presence of a Symbiotic Bacterium and a Pathogen Bacterium
Sponges, which are in close contact with numerous bacteria in prey/predator, symbiotic and pathogenic relationships, must provide an appropriate response in such situations. This starts with a discriminating recognition of the partner either by a physical contact or through secreted molecules or both. We investigated the expression of the Toll-like receptor, Caspase 3/7, Tumor Necrosis Factor receptor-associated factor 6, Bcl-2 homology protein-2 and macrophage expressed genes of axenic sponge cells in the presence of a symbiotic bacterium (Endozoicomonas sp. Hex311), a pathogen bacterium (Pseudoalteromonas sp. 1A1), their exoproducts and lipopolysaccharides. The vast majority of answers are in line with what could be observed with the symbiotic bacterium. The pathogenic bacterium seems to profit from the eukaryotic cell: suppression of the production of the antibacterial compound, inhibition of the apoptosis caspase-dependent pathway, deregulation of bacterial recognition. This work contributes new scientific knowledge in the field of immunology and apoptosis in early branching metazoan harboring within its tissue and cells a large number of symbiotic bacteria
Lipopolysaccharides from Commensal and Opportunistic Bacteria: Characterization and Response of the Immune System of the Host Sponge Suberites domuncula
Marine sponges harbor a rich bacterioflora with which they maintain close relationships. However, the way these animals make the distinction between bacteria which are consumed to meet their metabolic needs and opportunistic and commensal bacteria which are hosted is not elucidated. Among the elements participating in this discrimination, bacterial cell wall components such as lipopolysaccharides (LPS) could play a role. In the present study, we investigated the LPS chemical structure of two bacteria associated with the sponge Suberites domuncula: a commensal Endozoicomonas sp. and an opportunistic Pseudoalteromonas sp. Electrophoretic patterns indicated different LPS structures for these bacteria. The immunomodulatory lipid A was isolated after mild acetic acid hydrolysis. The electrospray ionization ion-trap mass spectra revealed monophosphorylated molecules corresponding to tetra- and pentaacylated structures with common structural features between the two strains. Despite peculiar structural characteristics, none of these two LPS influenced the expression of the macrophage-expressed gene S. domuncula unlike the Escherichia coli ones. Further research will have to include a larger number of genes to understand how this animal can distinguish between LPS with resembling structures and discriminate between bacteria associated with it
Antibiotic resistance patterns of Pseudomonas spp. isolated from faecal wastes in the environment and contaminated surface water
International audienceThe Pseudomonas genus, which includes environmental and pathogenic species, is known to present antibiotic resistances, and can receive resistance genes from multi-resistant enteric bacteria released into the environment via faecal rejects. This study was aimed to investigate the resistome of Pseudomonas populations that have been in contact with these faecal bacteria. Thus, faecal discharges originating from human or cattle were sampled (from 12 points and two sampling campaigns) and 41 Pseudomonas species identified (316 isolates studied). The resistance phenotype to 25 antibiotics was determined in all isolates, and we propose a specific antibiotic resistance pattern for 14 species (from 2 to 9 resistances). None showed resistance to aminoglycosides, tetracycline, or polymyxins. Four species carried a very low number of resistances, with none to β-lactams. Interestingly, we observed the absence of the transcriptional activator soxR gene in these four species. No plasmid transfer was highlighted by conjugation assays, and a few class 1 but no class 2 integrons were detected in strains that may have received resistance genes from Enterobacteria. These results imply that the contribution of the Pseudomonas genus to the resistome of an ecosystem first depends on the structure of the Pseudomonas populations, as they may have very different resistance profiles
Neuropeptidome of the Cephalopod Sepia officinalis : Identification, Tissue Mapping, and Expression Pattern of Neuropeptides and Neurohormones during Egg Laying
International audienc
Relative amounts of transcripts for Toll-like receptor (TLR), Toll-like Receptor associated factor 6-like protein (TRAF 6), Macrophage-Expressed Gene protein (MPEG), caspase-like 3/7, BCl-2 homolog protein-1 (BHP-1) and BCl-2 homolog protein-2 (BHP-2) in <i>N</i>-3-oxododecanoyl-<sub>L</sub>-homoserine lactone (3-oxo-C<sub>12</sub>-HSL)-stimulated <i>Suberites domuncula</i> compared to control <i>S. domuncula</i>.
<p>The mRNA levels in 8 h-stimulated <i>S. domuncula</i> were evaluated by quantitative reverse transcription-PCR and compared to those in control sponges. Reactions were performed in triplicate with three different specimens. Relative mRNA level values resulted from calculating values: values above and below 1 show a higher and a lower mRNA level in the presence of 10<sup>−6</sup> M 3-oxo-C<sub>12</sub>-HSL, respectively. Significant expression changes (p<0.05) in the presence of <i>N</i>-3-oxododecanoyl-<sub>L</sub>-homoserine are pointed out by an asterisk.</p
Relative amounts of the α subunit of ATPase (ssu a ATPase), α actinin, α tubulin and protein spot 121 transcripts in <i>N</i>-3-oxododecanoyl-<sub>L</sub>-homoserine lactone (3-oxo-C<sub>12</sub>-HSL)-stimulated <i>Suberites domuncula</i> compared to the control.
<p>The mRNA levels in stimulated S. <i>domuncula</i> were evaluated by quantitative reverse transcription-PCR and compared to non-stimulated sponges. Reactions were performed in triplicate with three different specimens. Relative mRNA level values resulted from calculating values: values above and below 1 show a higher and a lower mRNA level in the presence of 10<sup>−6</sup> M 3-oxo-C<sub>12</sub>-HSL, respectively. Significant expression changes (p<0.05) in the presence of <i>N</i>-3-oxododecanoyl-<sub>L</sub>-homoserine are pointed out by an asterisk.</p
Primers used to quantify gene expression in <i>Suberites domuncula</i> using real-time PCR.
<p>Primers used to quantify gene expression in <i>Suberites domuncula</i> using real-time PCR.</p