76 research outputs found

    Evolutionary optimization of service times in interactive voice response systems

    Get PDF
    A call center is a system used by companies to provide a number of services to customers, which may vary from providing simple information to gathering and dealing with complaints or more complex transactions. The design of this kind of system is an important task, since the trend is that companies and institutions choose call centers as the primary option for customer relationship management. This paper presents an evolutionary algorithm based on Dandelion encoding to obtain near-optimal service trees which represent the structure of the desired call center. We introduce several modifications to the original Dandelion encoding in order to adapt it to the specific problem of service tree design. Two search space size reduction procedures improve the performance of the algorithm. Systematic experiments have been tackled in order to show the performance of our approach: first, we tackle different synthetic instances, where we discuss and analyze several aspects of the proposed evolutionary algorithm, and second, we tackle a real application, the design of the call center of an Italian telecommunications company. In all the experiments carried out we compare our approach with a lower bound for the problem based on information theory, and also with the results of a Huffman algorithm we have used for reference

    Monovinyl sulfone beta-cyclodextrin. A flexible drug carrier system

    Get PDF
    Cyclodextrins have been conjugated to target various receptors and have also been functionalized with carbohydrates for targeting specific organs. However, this approach is based on a rigid design that implies the ad hoc synthesis of each cyclodextrin-targeting agent conjugate. We hypothesized that: 1) a modular design that decouples the carrier function from the targeting function leads to a flexible system, 2) combining the reactivity of the vinyl sulfone group toward biomolecules that act as targeting agents with the ability of cyclodextrin to form complexes with a wide range of drugs may yield a versatile system that allows the targeting of different organs with different drugs, and 3) the higher reactivity of histidine residues toward the vinyl sulfone group can be exploited to couple the cyclodextrin to the targeting system with a degree of regioselectivity. As a proof of concept, we synthesized a monovinyl sulfone beta-cyclodextrin (module responsible for the payload), which, after coupling to recombinant antibody fragments raised against Trypanosoma brucei (module responsible for targeting) and loading with nitrofurazone (module responsible for therapeutic action) resulted in an effective delivery system that targets the surface of the parasites and shows trypanocidal activity

    Cytokinesis in bloodstream stage Trypanosoma brucei requires a family of katanins and spastin

    Get PDF
    Microtubule severing enzymes regulate microtubule dynamics in a wide range of organisms and are implicated in important cell cycle processes such as mitotic spindle assembly and disassembly, chromosome movement and cytokinesis. Here we explore the function of several microtubule severing enzyme homologues, the katanins (KAT80, KAT60a, KAT60b and KAT60c), spastin (SPA) and fidgetin (FID) in the bloodstream stage of the African trypanosome parasite, Trypanosoma brucei. The trypanosome cytoskeleton is microtubule based and remains assembled throughout the cell cycle, necessitating its remodelling during cytokinesis. Using RNA interference to deplete individual proteins, we show that the trypanosome katanin and spastin homologues are non-redundant and essential for bloodstream form proliferation. Further, cell cycle analysis revealed that these proteins play essential but discrete roles in cytokinesis. The KAT60 proteins each appear to be important during the early stages of cytokinesis, while downregulation of KAT80 specifically inhibited furrow ingression and SPA depletion prevented completion of abscission. In contrast, RNA interference of FID did not result in any discernible effects. We propose that the stable microtubule cytoskeleton of T. brucei necessitates the coordinated action of a family of katanins and spastin to bring about the cytoskeletal remodelling necessary to complete cell divisio

    The Chromosomal Passenger Complex and a Mitotic Kinesin Interact with the Tousled-Like Kinase in Trypanosomes to Regulate Mitosis and Cytokinesis

    Get PDF
    Aurora B kinase plays essential roles in mitosis and cytokinesis in eukaryotes. In the procyclic form of Trypanosoma brucei, the Aurora B homolog TbAUK1 regulates mitosis and cytokinesis, phosphorylates the Tousled-like kinase TbTLK1, interacts with two mitotic kinesins TbKIN-A and TbKIN-B and forms a novel chromosomal passenger complex (CPC) with two novel proteins TbCPC1 and TbCPC2. Here we show with time-lapse video microscopy the time course of CPC trans-localization from the spindle midzone in late anaphase to the dorsal side of the cell where the anterior end of daughter cell is tethered, and followed by a glide toward the posterior end to divide the cell, representing a novel mode of cytokinesis in eukaryotes. The three subunits of CPC, TbKIN-B and TbTLK1 interact with one another suggesting a close association among the five proteins. An ablation of TbTLK1 inhibited the subsequent trans-localization of CPC and TbKIN-B, whereas a knockdown of CPC or TbKIN-B disrupted the spindle pole localization of TbTLK1 during mitosis. In the bloodstream form of T. brucei, the five proteins also play essential roles in chromosome segregation and cytokinesis and display subcellular localization patterns similar to that in the procyclic form. The CPC in bloodstream form also undergoes a trans-localization during cytokinesis similar to that in the procyclic form. All together, our results indicate that the five-protein complex CPC-TbTLK1-TbKIN-B plays key roles in regulating chromosome segregation in the early phase of mitosis and that the highly unusual mode of cytokinesis mediated by CPC occurs in both forms of trypanosomes

    Specific Cell Targeting Therapy Bypasses Drug Resistance Mechanisms in African Trypanosomiasis

    Get PDF
    African trypanosomiasis is a deadly neglected disease caused by the extracellular parasite Trypanosoma brucei. Current therapies are characterized by high drug toxicity and increasing drug resistance mainly associated with loss-of-function mutations in the transporters involved in drug import. The introduction of new antiparasitic drugs into therapeutic use is a slow and expensive process. In contrast, specific targeting of existing drugs could represent a more rapid and cost-effective approach for neglected disease treatment, impacting through reduced systemic toxicity and circumventing resistance acquired through impaired compound uptake. We have generated nanoparticles of chitosan loaded with the trypanocidal drug pentamidine and coated by a single domain nanobody that specifically targets the surface of African trypanosomes. Once loaded into this nanocarrier, pentamidine enters trypanosomes through endocytosis instead of via classical cell surface transporters. The curative dose of pentamidine-loaded nanobody-chitosan nanoparticles was 100-fold lower than pentamidine alone in a murine model of acute African trypanosomiasis. Crucially, this new formulation displayed undiminished in vitro and in vivo activity against a trypanosome cell line resistant to pentamidine as a result of mutations in the surface transporter aquaglyceroporin 2. We conclude that this new drug delivery system increases drug efficacy and has the ability to overcome resistance to some anti-protozoal drugs.JAGS was funded by the European Union, grant FP7-HEALTH-2007-B-2.3.4-1.223048, NANOTRYP and Ministerio de EconomĂ­a y Competitividad, Spain Plan Nacional de InvestigaciĂłn grant SAF2011- 30528. JLA was funded by Instituto de Salud Carlos III, Spain, grant FIS. 11/02571. HPdK was supported by a grant from the Medical Research Council (84733)

    Challenges for Allergy Diagnosis in Regions with Complex Pollen Exposures

    Get PDF
    Over the past few decades, significant scientific progress has influenced clinical allergy practice. The biological standardization of extracts was followed by the massive identification and characterization of new allergens and their progressive use as diagnostic tools including allergen micro arrays that facilitate the simultaneous testing of more than 100 allergen components. Specific diagnosis is the basis of allergy practice and is always aiming to select the best therapeutic or avoidance intervention. As a consequence, redundant or irrelevant information might be adding unnecessary cost and complexity to daily clinical practice. A rational use of the different diagnostic alternatives would allow a significant improvement in the diagnosis and treatment of allergic patients, especially for those residing in complex pollen exposure areas

    Interphase Nucleo-Cytoplasmic Shuttling and Localization of SIRT2 during Mitosis

    Get PDF
    The human NAD+-dependent protein deacetylase SIRT2 resides predominantly in the cytoplasm where it functions as a tubulin deacetylase. Here we report that SIRT2 maintains a largely cytoplasmic localization during interphase by active nuclear export in a Crm1-dependent manner. We identified a functional, leptomycin B-sensitive, nuclear export signal sequence within SIRT2. During the cell cycle, SIRT2 becomes enriched in the nucleus and is associated with mitotic structures, beginning with the centrosome during prophase, the mitotic spindle during metaphase, and the midbody during cytokinesis. Cells overexpressing wild-type or a catalytically inactive SIRT2 exhibit an increase in multinucleated cells. The findings suggest a novel mechanism of regulating SIRT2 function by nucleo-cytoplasmic shuttling, as well as a role for SIRT2 in the nucleus during interphase and throughout mitosis

    The Aurora Kinase in Trypanosoma brucei Plays Distinctive Roles in Metaphase-Anaphase Transition and Cytokinetic Initiation

    Get PDF
    Aurora B kinase is an essential regulator of chromosome segregation with the action well characterized in eukaryotes. It is also implicated in cytokinesis, but the detailed mechanism remains less clear, partly due to the difficulty in separating the latter from the former function in a growing cell. A chemical genetic approach with an inhibitor of the enzyme added to a synchronized cell population at different stages of the cell cycle would probably solve this problem. In the deeply branched parasitic protozoan Trypanosoma brucei, an Aurora B homolog, TbAUK1, was found to control both chromosome segregation and cytokinetic initiation by evidence from RNAi and dominant negative mutation. To clearly separate these two functions, VX-680, an inhibitor of TbAUK1, was added to a synchronized T. brucei procyclic cell population at different cell cycle stages. The unique trans-localization pattern of the chromosomal passenger complex (CPC), consisting of TbAUK1 and two novel proteins TbCPC1 and TbCPC2, was monitored during mitosis and cytokinesis by following the migration of the proteins tagged with enhanced yellow fluorescence protein in live cells with time-lapse video microscopy. Inhibition of TbAUK1 function in S-phase, prophase or metaphase invariably arrests the cells in the metaphase, suggesting an action of TbAUK1 in promoting metaphase-anaphase transition. TbAUK1 inhibition in anaphase does not affect mitotic exit, but prevents trans-localization of the CPC from the spindle midzone to the anterior tip of the new flagellum attachment zone for cytokinetic initiation. The CPC in the midzone is dispersed back to the two segregated nuclei, while cytokinesis is inhibited. In and beyond telophase, TbAUK1 inhibition has no effect on the progression of cytokinesis or the subsequent G1, S and G2 phases until a new metaphase is attained. There are thus two clearly distinct points of TbAUK1 action in T. brucei: the metaphase-anaphase transition and cytokinetic initiation. This is the first time to our knowledge that the dual functions of an Aurora B homolog is dissected and separated into two clearly distinct time frames in a cell cycle

    Overexpression of cathepsin f, matrix metalloproteinases 11 and 12 in cervical cancer

    Get PDF
    BACKGROUND: Cervical carcinoma (CC) is one of the most common cancers among women worldwide and the first cause of death among the Mexican female population. CC progression shows a continuum of neoplastic transitions until invasion. Matrix metalloproteinases (MMPs) and cathepsins play a central role on the enhancement of tumor-induced angiogenesis, cell migration, proliferation, apoptosis and connective tissue degradation. MMPs -2 and -9 expression has been widely studied in cervical cancer. Nevertheless, no other metalloproteinases or cathepsins have been yet related with the progression and/or invasion of this type of cancer. METHODS: Three HPV18 CC cell lines, two HPV16 CC cell lines and three HPV16 tumor CC tissues were compared with three morphologically normal, HPV negative, cervical specimens by cDNA arrays. Overexpression of selected genes was confirmed by end point semiquantitative reverse transcription-PCR with densitometry. In situ hybridization and protein expression of selected genes was further studied by means of two tissue microarrays, one consisting of 10 HSIL and 15 CC and the other one of 15 normal cervical and 10 LSIL tissues. RESULTS: TIMP1, Integrins alpha 1 and 4, cadherin 2 and 11, Cathepsins F, B L2, MMP 9, 10 11 and 12 were upregulated and Cathepsin S, L, H and C, Cadherins 3 and 4, TIMP3, MMP 13, Elastase 2 and Integrin beta 8 were found to be downregulated by cDNA arrays. Endpoint RT-PCR with densitometry gave consistent results with the cDNA array findings for all three genes selected for study (CTSF, MMP11 and MMP12). In situ hybridization of all three genes confirmed overexpression in all the HSIL and CC. Two of the selected proteins were detected in LSIL, HSIL and CC by immunohistochemistry. CONCLUSION: Novel undetected CC promoting genes have been identified. Increased transcription of these genes may result in overexpression of proteins, such as CTSF, MMP11 and MMP12 which could contribute to the pathogenesis of CC
    • …
    corecore