
602 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 4, AUGUST 2010

Evolutionary Optimization of Service Times
in Interactive Voice Response Systems

Sancho Salcedo-Sanz, Maurizio Naldi, Senior Member, IEEE, Ángel M. Pérez-Bellido, Jose A. Portilla-Figueras,
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Abstract—A call center is a system used by companies to
provide a number of services to customers, which may vary
from providing simple information to gathering and dealing
with complaints or more complex transactions. The design of
this kind of system is an important task, since the trend
is that companies and institutions choose call centers as the
primary option for customer relationship management. This
paper presents an evolutionary algorithm based on Dandelion
encoding to obtain near-optimal service trees which represent
the structure of the desired call center. We introduce several
modifications to the original Dandelion encoding in order to
adapt it to the specific problem of service tree design. Two search
space size reduction procedures improve the performance of the
algorithm. Systematic experiments have been tackled in order to
show the performance of our approach: first, we tackle different
synthetic instances, where we discuss and analyze several aspects
of the proposed evolutionary algorithm, and second, we tackle
a real application, the design of the call center of an Italian
telecommunications company. In all the experiments carried out
we compare our approach with a lower bound for the problem
based on information theory, and also with the results of a
Huffman algorithm we have used for reference.

Index Terms—Call center design, Dandelion codes, evolution-
ary algorithms, interactive voice response systems, tree encoding.

I. Introduction

CALL CENTERS are now an established way of managing
the relationship with customers, and they are used by

many companies. Though estimating their number is a nearly
impossible task, a recently reported estimate is of about
300 000 all over the world, with a continuous growth [1], since
it can be envisaged that companies and public institutions
will choose call centers as a primary means of customer
relationship management.
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Comunicaciones, Escuela Politécnica Superior, Universidad de Alcalá,
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A typical call center is set up to provide a number of
services to customers, which may vary from providing simple
information to gathering and dealing with complaints or more
complex transactions. In a call center an interaction takes
place between the customer and the system, which has to
provide answers to the customers’ queries. The interaction may
be managed by a fully automatic system (the so-called interac-
tive voice response (IVR) system) or require the intervention
of a human agent. The customer’s satisfaction evaluated over
the full service cycle is one of the most important parameters
when judging the overall call center’s quality [2], [3].

A simplified approach is taken in [4], for the case of call
centers managed by human agents, where the service quality
is measured along two dimensions: qualitative (psychological)
and quantitative (operational). The former relates to the way
in which service is provided and perceived (usefulness of
answers, friendliness of the agent, etc. [5]). The latter is more
related to service accessibility. Thus, the quality of service
is typically embodied by a single parameter (the time spent
waiting for the agent, for example), though it can also be de-
fined through different parameters, such as the average waiting
time or one or two of its percentile values. In this context, the
most important effect of the desired quality level is to require a
proper level of staffing. In addition, the definition of the correct
dimensioning of the system on the basis of the desired waiting
time has required a large number of research efforts [4].

However, if the interaction with the customers takes place
also through automated systems rather than by human agents
alone, we cannot focus just on the time spent waiting for the
agents. In this case many answers are provided directly by the
IVR, and so the time spent within the IVR becomes relevant
for the overall service quality. In today’s call centers the IVR
is getting more and more important, mainly due to the need to
streamline the staff: the usage of IVRs accounted for 38% of
all calls handled in 2000, with a growing trend to over 70%
in 2005 [6], and is typically higher in some contexts, e.g.,
in call center for financial services, where the percentage of
self-served calls through IVR was 65% already in 1999 [7].
The heavier reliance on IVRs implies that a longer slice of the
service time is spent by the customer navigating through the
IVR menu [8]. Greater attention should therefore be devoted
to the proper design of the IVR in order to minimize the time
that a customer is within the system.

A few works have dealt with the optimal design and man-
agement of call centers so far. Extensive reviews are contained
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Fig. 1. Service chain in a typical call center.

in [4] and [19]. Among the most recent works we can cite [9],
[10], and [20], which examine different queuing models for
call center staffing. On the other hand, in [8] the tree structure
of the service menu proposed by IVRs is highlighted, and its
relationship with quality-of-service parameters is considered.

In this paper, we propose an evolutionary algorithm based
on Dandelion encoding [12], to optimally design IVR systems.
The Dandelion encoding has been recently proposed as a
powerful method to encode trees in evolutionary algorithms,
with good properties of locality under evolutionary operators
[13]. Several modifications to the basic Dandelion decoding
algorithm are needed in order to adapt it to the specific
characteristics of IVR design systems, and to improve the
performance of the algorithm. These modifications are in-
cluded due to the following facts: first, the IVR design problem
needs to encode rooted trees, whereas the basic Dandelion
encoding manages trees without root, so a small modification
is needed to solve this point, and second, we introduce two
search space size reductions by using equivalent trees to the
specified by the Dandelion string. This improves considerably
the performance of the proposed evolutionary algorithm. Our
Dandelion encoded evolutionary algorithm has been tested on
the design of several call centers based on IVR, involving
from 50 up to 300 services, which may be considered as large
and very large systems. Also, a real application, the design of
the call center of the Italian company Telecom Italia Mobile
(TIM) has been carried out.

The rest of the paper has the following structure. The next
section provides an overview of how to design IVR systems,
and shows that this problem is equivalent to the design of
the rooted tree of minimum average service time, in which
the leaves are the services. Section III specifically defines the
problem, and relates it with the source coding theorem which
has been formulated in the context of digital communication
systems. In this section, a lower bound based on the entropy
of the systems is presented, and the Huffman algorithm is
proposed as reference algorithm. Section IV presents the
Dandelion encoded evolutionary algorithm we propose in this
paper. Also the case of rooted trees and the search space
size reduction procedures are introduced at this point. In
Section V, we test the performance of our approach by solving

different IVR design instances, with different number and
probability distributions of services. This section also analyzes
other aspects of the algorithm, such as the performance of
the search space reductions, the performance of the algorithm
with different operators and a detailed analysis of the compu-
tation time of the approaches analyzed in the paper. Finally,
Section VI gives some final conclusion on the work carried
out and some lines for future research.

II. Service Trees in Call Centers

A typical call center employs an IVR system as a front-
end for its customers. The use of an IVR allows to reduce
the number of human operators needed to manage the call
center. This results in savings on the overall workforce costs,
which represent the major part of the costs incurred in call
center operations. Note that many of the services provided
by the call center require standardized answers (such as the
answers to frequently asked questions) or answers that result
from database query searches (such as the balance on a bank
account or the state of a purchase order), and therefore do not
need to involve a human intervention. The range of services
amenable to be directly provided by an IVR is therefore
quite wide. In some cases the IVR is employed not only to
provide an automatic response, but also to select the most
appropriate set of operators for the service requested. Hence,
of all the services provided by the call center, some will be
provided by an automatic system, while others will require a
talk with a human operator.

The IVR typically represents the first stage in the customer-
call center interaction, so that the human intervention is
configured as the last chance. The complete service chain,
including both the IVR and the operator-assisted portions, is
reported in Fig. 1 [4].

After dialing the call center phone number, the customer is
driven through a menu listing a number of options (leading to
different services) and providing a code to signal the customer
choice. At each stage the users can choose (by dialing the
appropriate code) among a number of options, which may
either provide them with the required service (in the form of
an answer uttered by a synthetic voice or by the connection to
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Fig. 2. Example of service tree.

a human operator) or lead them to a further option choosing
stage. The service therefore requires the users to go through
a number of stages where they have to exercise a choice. The
guided navigation through the service menu can be described
by a graph in the form of a service tree, where each node
represents a message announcing the various options (the
node’s cost is the message duration) and the links represent
the possible options that exist, leading either to the service
provision or to a new option menu further down the service
tree. The tree leaves represent the services finally delivered to
the user.

An example of service tree is presented in Fig. 2. It
describes the current service tree of the Customer Service of
a prominent Italian telecommunications operator, as reported
in [8]. The circles representing the nodes include the message
duration, expressed in seconds. The links include the code to
be dialed to choose the corresponding option. In this tree, the
number of leaves (including the recurring leaves, which have
not been included for the sake of readability) are 25.

As can be seen, the number of options announced within a
message can be quite variable (in the example of Fig. 2 it goes
from a minimum of 2 in the node Operator to a maximum of
6 in the node Promotions). In the following, we refer to the
case where the number of options in each announcement is
constant (say k) as a regular k-ary tree. In the general case of
an IVR with M services (i.e., a service tree with M leaves), we
indicate by pi the probability of the ith service to be requested
and by ti the time needed to get it. It is important to point out
that this time ti is given by the sum of the durations of the
announcements to be listened in order to get the service i,
which in our examples are considered to be equal for all the
announcements, so differences in ti are given by the number
of messages to be listened in a given route to a service. With
these definitions, the most relevant figure of merit of the IVR
is the average service time, defined as

∑M
i=1 tipi, similarly to

the widespread usage in call centers (see, e.g., [14] and [15]).
Therefore, the optimal design of an IVR system consists of,
given a set of services with the corresponding probabilities,
obtaining a service tree (T ) which minimizes the following
objective function:

f (T ) =
M∑

i=1

tipi. (1)

III. The Service Tree Design Problem and Its

Relation to Source Coding

Since the number of services is typically set in advance,
the tree design problem is basically the search for a grouping
of services that minimizes the resulting average service time
given by (1); if we move a service up in the tree, we lower
the duration of the message (the donor node) announcing
that service (and therefore reduce the time needed to get the
services announced in the nodes child to the donor node),
but at the same time we add to the duration of the message
(the recipient node) where the service is now announced
(and therefore increase the time needed to get the services
announced in the nodes child to the recipient node). The
final result may be positive or negative depending on the tree
structure and on the probability values associated with the
different services. Note that the problem is similar to assign
codewords to a set of messages to be transmitted (digital
transmission in communications networks) so that the mean
length of the codeword is minimized. The parallel can be made
more precise if we consider a binary tree, e.g., in Fig. 3.

If we assign to either of the branches leaving each node
the symbol 0, and to the other branch the symbol 1, the path
from the root message to the final service can be described
by a codeword whose length represents the number of tree
levels traversed. For example, if we assign the symbol 0 to
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Fig. 3. Regular binary service tree.

the left branch, the service 4 (assigning numbers to services
starting from the leftmost leaf of the tree) is represented by
the codeword 110, whose length is 3. If the duration of each
message is constant, the codeword length is proportional to
the service time. The problem of minimizing the average
service time is therefore equivalent to minimizing the average
codeword length. Of course, the binary codes case (binary
trees) is readily extended to k-ary codes (k-ary trees). This
analogy allows us to use the well-known results obtained in
the past for coding. In particular, we can use the noiseless
coding theorem [11] to establish a lower bound for the average
codeword length, and therefore the average service time. That
theorem states that the average codeword length l using an
alphabet of k symbols is always larger than the uncertainty
measure represented by the entropy of the system. For a set
of M services (whose probabilities are p1 ≤ p2 ≤ . . . ≤ pM)
we have

l ≥ −
M∑

i=1

pi logk (pi) . (2)

In our case, we can derive the lower bound for the average
service time for a regular k-ary tree with a portfolio of M

services (whose probabilities are again p1 ≤ p2 ≤ . . . ≤ pM)

T = lkdann ≥ −kdann

M∑

i=1

pi logk (pi) (3)

where dann is the common duration of the announcements for
each option. It can be seen that the lowest lower bound is
reached for k = 3, which is therefore an absolute benchmark.
In fact, we can write the lower bound in the following form:

T ≥ −kdann

M∑

i=1

pi logk (pi) = −dann
k

ln (k)

M∑

i=1

pi ln (pi) (4)

where the dependence on the tree order (i.e., on the num-
ber of options for each message) is through the function
k/ln(k) which is reported in Fig. 4; this function represents the
entropic bound for the service time, normalized to the entropy
expressed in the base e and to the announcement duration.
Of course, this does not mean that a ternary tree is always a
better choice than any other regular k-ary tree, or a non-regular
tree. The optimal value of k for a given design procedure will
depend on the probability values of the set of services.

Fig. 4. Entropic bounds for the service time.

Since our service tree design problem has been shown to
be analogous to source coding, we can resort to the existing
set of entropy-based source coding algorithms for which:

a) an alphabet of k symbols is used;
b) the probability of occurrence of each message (service)

is known.

A natural choice in this case is the Huffman coding,
which, though being more than 50 years old [16], provides
near-optimal performance. In fact, its inefficiency, i.e., the
difference between the expected service time and the optimum,
given by the entropy, is bounded by [17]

�T = σk + pM

k

ln k
(5)

where

σk = logk(k − 1) + logk

(
logk(e)

) − logk(e) +
1

k − 1
. (6)

For the sake of completeness, we report here the Huffman
coding methodology, adapted to our case, through the list of
its steps.

1) List the services.
2) Order the services starting with the most likely one.
3) Choose the number k of options for each message.
4) Create a parent node for the least likely services by

grouping the k least likely services (if it is the first
grouping and (M − 1)/(k − 1) is not an integer then
group under the new node the M mod (k−1) least likely
services).

5) Assign to the new node a probability being the sum of
the probabilities of its sons.

6) Redefine an ordered list formed by the so far ungrouped
services and the grouped services as represented by their
parent nodes.

7) Go back to step 4 until no ungrouped services are left.

IV. Evolutionary Design of Service Trees

In this paper, an evolutionary algorithm based on a recently
proposed tree encoding (Dandelion encoding) is presented
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for near-optimal design of services trees in a call center.
In the next subsection we present the different parts of the
algorithm, including the encoding using the Dandelion code,
and a modification of the algorithm to manage rooted trees,
two search space size reductions, and the main operators and
parameters used in the core of the evolutionary algorithm.

A. Evolutionary Algorithm Encoding: The Dandelion Code

The Dandelion code is a Cayley-like encoding which has
been recently described and used for encoding trees in evolu-
tionary algorithms [12], [13]. In 1889, Cayley proved that in a
complete labeled network with n nodes there are nn−2 different
spanning trees. In 1918, Prüfer gave a constructive proof of the
Cayley’s result, using a bijection between the spanning trees
on n vertices and the strings of length n − 2 over an alphabet
of n symbols. Mathematically, for each n ≥ 2, let Cn be the
set of strings consisting of (n−2) integers from the set [1, n] =
{1, 2, . . . , n}, with repetitions allowed. For a given n, Cn

are known as Cayley strings, or Cayley codes. For each n ≥ 2
let �n be the set of labeled trees on the vertex set [1, n].
The Cayley result showed that |�n| = nn−2, and |Cn| = |�n|.
Thus, the trees in |�n| can be put in one-to-one correspondence
with the Cayley strings Cn, and there are (nn−2)! Cayley codes
(different possible assignments of trees to Cayley strings).

In [12], [13], it is shown that the Dandelion encoding is a
suitable way of encoding a tree in an evolutionary algorithm,
better than other types of encodings like Prüfer encoding for
example, since Dandelion code ensures locality (i.e., small
changes in the code, make small changes in the tree), whereas
Prüfer encoding or other types of tree representation do not
have this important feature, so their performance is usually
worse.

There are several decoding algorithms (string to tree) for
the Dandelion code. In this paper we use the so-called fast
algorithm, proposed by Piccioto in [18], which has been also
used in [13].

1) Input: a Dandelion code C = (c2, c3, . . . , cn−1).
2) Output: the tree T ∈ �n corresponding to C.
3) Step 1: define the function φC: [2, n − 1] → [1, n] such

that φC(i) = ci for each i ∈ [2, n−1]. Note that the value
of this function φC in i corresponds to the ith position
of the encoding (ci).

4) Step 2: calculate the cycles associated to the function
φC, Z1, Z2, . . . , ZL (see [12] for an example). Let bi be
the maximum element in cycle Zi. We assume that the
cycles are recorded such that bi is the rightmost element
of Zi, and that bi < bj if i > j.

5) Step 3: form a single list π of the elements in Z1,

Z2, . . . , ZL, in the order they occur in this cycle list,
from the first element of Z1 to the last element of ZL.

6) Step 4: construct the tree T ∈ �n corresponding to C

in the following way: take a set of n isolated vertices
(labeled with the integers from 1 to n), create a path
from vertex 1 to vertex n by following the list π from
left to right, and then create the edge (i, ci) for every
i ∈ [2, n − 1] which does not occur in the list π.

We will illustrate this fast algorithm using the exam-
ple in Fig. 5. This figure proposes the Dandelion code

Fig. 5. (a) Example of a Dandelion code. (b) Final tree after the decoding
process.

C = (4, 6, 2, 5, 9, 1, 12, 6, 2, 9). Note that there are three
cycles in this case, Z1 = (6, 9), Z2 = (5), and Z3 = (2, 4). Note
also that the order in which we have recorded these cycles
follows the indications in step 2 of the fast decoder algorithm.
We form then the list π = [6, 9, 5, 2, 4], and construct the
first part of the tree T starting from vertex 1, ending in vertex
12, and following the numbers in π. The rest of the tree is
constructed by creating the corresponding edges (i, ci) for i

which are not in the list π, in this case the vertices 7, 3, 11, 10,

and 8.

B. The Oriented-Tree Case

Dandelion code considers the case of un-oriented trees, in
which there is not a root node to start the tree. In the design
of call centers a rooted tree is required, i.e., one node acts
as root node, and the rest are directly attached to it or as
subbranches in lower nodes. Thus, a given encoding for a
Dandelion code represents n−M possible directed trees (note
that M of the tree leaves cannot be considered as root nodes).
After the decoding of the Dandelion string, we evaluate the
n−M possible different directed trees, and keep the best tree in
terms of the objective function as represented by the Dandelion
string, (see Fig. 6 as an example).

Another important point to consider in the oriented-tree case
is that M nodes of the oriented-trees must be leaves. Thus, a
procedure that ensures this fact is necessary. We implement
a procedure based on a property of the Dandelion codes: the
leaves of a tree in a Dandelion code are the nodes whose
numbers do not appear in the Dandelion string. As an example,
Fig. 5(a) shows a Dandelion code in which numbers 7, 3, 8, 10,
and 11 are not included, and consequently the nodes with these
numbers become the tree leaves [Fig. 5(b)]. In this way, the
procedure consists of not using the first M nodes numbers
(1 to M) in the random generation of the initial codes (at the
beginning of the evolutionary algorithm), nor in the mutation
operator. Note that this implies that elements in the Dandelion
codes used in the proposed evolutionary algorithm (EA) are
in the range [M + 1, n − 2].

In our evolutionary algorithm, we use a fixed-length tree
encoding, i.e., trees with a given constant number of nodes
equal to n = 2M − 1. Note that 2M − 1 is the worst case,
that is, any tree with larger number of nodes than 2M − 1
can be transformed into a better fitness tree with less than
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Fig. 6. Example of root selection in a directed tree; it is supposed that the
best fitness is obtained when the node number 9 is considered the tree root.

or equal to 2M − 1. Moreover, these constant-length codes
allow us to perform a search for trees of any number of
nodes. That is because a tree which has some leaves with
associated numbers larger than M (and consequently a tree
with more than M leaves) is equivalent to another tree without
these leaves (both trees produce the same value of the fitness
function, because we consider that only the M first leaves
of the tree are relevant to calculate the average number of
bifurcations). See an example of this in the tree of Fig. 7. In
this example M = 7, thus the nodes 8, 11, and 12 (all of them
larger than M) which appear in the tree on the left-hand side
do not influence the number of bifurcations, so the tree on the
right-hand side is equivalent.

C. Search Space Size Reductions

Two search space size reductions can be considered when
the Dandelion code is applied to obtain the optimal ser-
vice tree. Both reductions are related to the position of the
tree leaves and the intermediate nodes. The objective of these
search space reductions is to eliminate redundant trees in the
search space. Note that these search space reductions do not
eliminate the optimal tree from the search space.

1) Search Space Reduction 1: There is one quite intu-
itive space size reduction that may be applied in order to
save computation time in the algorithm. Recall that in the
correspondence between codewords and service trees that we
employ in the use of the Huffman algorithm, each codeword

Fig. 7. Example of leaves’ removal in an unfeasible tree.

Fig. 8. Search space reductions example. (a) Original tree. (b) Equivalent
tree after applying Reduction 1. (c) Equivalent tree after applying Reduction 2.
(d) Final tree, after removing all useless leaves.

represents a service in the call center, and the length of
each codeword is related to the time a given user needs to
reach that service, or, equivalently, the number of bifurcations
from the root node to the leaf (service). The idea is that
the most frequently requested services must be associated to
the smallest times (smallest number of bifurcations), as the
Huffman algorithm does. In order to force this, we sort the
services in increasing order of probability, and the positions
where these services (leaves) can be placed in decreasing order
of time to reach them, and then match the elements of both
list in an one-to-one fashion. Note that this procedure always
provides a solution at least as good as the initial one, so the
resulting search space will contain the global optimum to the
problem. Fig. 8(a) and (b) shows an example of this search
space reduction procedure. This example considers a service
tree with M = 7 services, with the service 1 being the most
probable, the service 2 the second most probable, and so on.

2) Search Space Reduction 2: The second search space
size reduction deals with the reallocation of the n − M last
nodes. Recall that the first M numbers in nodes identify the
tree services, but there are still n−M nodes in the tree which
do not represent services, and have influence in the encoding of
the tree. The idea is that these n−M nodes must be reallocated
as a function of the M leaves of the tree, in such a way that
two trees with the leaves in the same position (same fitness),
have the same encoding. Note that this procedure reduces
(n − M)! trees, all them equivalent (same fitness), into just
one, and therefore part of the existing encoding redundancy is
eliminated. Fig. 8(b) and (c) shows an example of this point.
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Fig. 9. Outline of the evolutionary algorithm proposed in this paper, includ-
ing the search space reduction (SR) procedures.

Fig. 8(d) shows a tree equivalent to the one given in (c), a
process similar to the one shown in Fig. 7.

D. Evolutionary Algorithm Operators and Parameters

Our evolutionary algorithm is structured in the traditional
form, with procedures of selection, crossover, and mutation.
The encoding of the proposed EA is the Dandelion encoding
described in Section IV-A, specific for the direct tree case,
as described in Section IV-B. Once the root is selected, the
two local searches for reducing the search space are applied.
At this stage, the individual is ready for the calculation of its
final fitness value. Several operators of selection and crossover
are used in the experiments carried out, whereas the mutation
operator is maintained unchanged. We describe the election of
selection and crossover in each experimental subsection. The
mutation operator is a little bit different than in a classical
evolutionary algorithm. Recall that we reserve the first M

numbers to represent the leaves of the tree, so they cannot
appear in the encoding. Thus, the mutation operator chooses
one point in the Dandelion string and randomly replaces it with
another integer number randomly chosen from [M + 1, n − 2]
(range of the elements of the Dandelion codes). An outline of
the proposed EA is shown in Fig. 9.

Regarding the parameters of the algorithm, we have im-
plemented the standard values of crossover (Pc = 0.6) and
mutation (Pm = 0.01) operators. The population size is 100
and the generations number has been fixed to 750, after which
we keep the best tree encountered so far.

V. Experiments and Results

In order to test the performance of the algorithms proposed
in this paper we have tackled the design of a number of call
centers, structuring the experiments in synthetic instances and
a real application.

In the case of synthetic instances we test different aspects
of the algorithm using different number and probability dis-
tribution of services. Specifically, we have solved synthetic
instances from 50 to 300 services, in steps of 50. In these in-
stances we test the differences in performance of the algorithm
when the search space reduction is applied, we analyze the

TABLE I

Lower Bound and Huffman Algorithm’s Results (in Seconds)

in the Different Synthetic Instances Tackled in the Paper

Number of services 50 100 150 200 250 300
Zipf distribution
Lower bound 8.7304 10.0512 10.8036 11.3297 11.7336 12.0611
Huffman 8.9673 10.2964 11.0318 11.5581 11.9569 12.2781
Uniform distribution
Lower bound 10.2018 11.9975 13.1789 14.0203 14.4959 15.0581
Huffman 10.5058 12.2078 13.4689 14.2535 14.6869 15.2821

Used for reference and comparison in the rest of the paper.

computational time required and several possibilities to re-
duce it, and finally the performance of the algorithm when
different evolutionary operators are applied. To offer a direct
comparison of the results obtained in the different experiments,
we used the Huffman algorithm’s results and the entropic
bound described in Section III (see Table I). Regarding the
real application, it corresponds to the design of a call center
to the Italian mobile communications company TIM. In all
the experiments carried out in this paper a number of 30
independent runs for each instance are considered.

In the experiments carried out on synthetic problems in-
stances we use two models for the probability of services: a
classical uniform probability distribution and a Zipf probability
distribution. According to the latter model, the probability of
a given service is related to its popularity rank. Assigning
ranks in order of decreasing popularity the probability that
the ith ranked service in a group of M is chosen is inversely
proportional to its rank, i.e.,

P[X = i] =

1

i
M∑

i=1

1

i

(7)

where X is the random variable expressing the choice. This
expression represents the simplest form of the original for-
mulation by Zipf [21] where the probability of interest is
inversely proportional to a power of the rank (though the
power was close to unity in the original model). Though
arising in the field of linguistics, to model the frequency of
appearance of words in a written text, the model has quickly
established itself to describe rank-frequency relationships in
a number of application fields. Unfortunately, there are no
studies, as far as the authors know, on popularity models for
the services offered by a call center, but the Zipf model has
been widely used in similar and related contexts. Among the
most relevant we can cite the popularity of web documents
[22], information dissemination [23], queries in P2P systems
[24], web services on personal digital assistants (PDAs) [25],
and wide-area infrastructure services [26]. We can therefore
consider the Zipf model as a valid candidate to represent the
popularity of call center services.

A. Experiments to Test the Proposed Search Space Reductions

In the first round of experiments, we show the effect
of introducing the search space reductions described in
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TABLE II

Comparison of the Results (in Seconds) Obtained by the Dandelion EA (Multi-Point Crossover, Roulette Wheel) With and

Without Search Space Reductions, When Service Probabilities Follow a Zipf Distribution

Number of services 50 100 150 200 250 300
Dandelion EA (NSPR)
Best value 8.9034 10.3261 11.1720 11.7129 12.3673 12.9145
Mean 8.9830 10.4681 11.3710 12.0588 12.8042 13.2107
Standard deviation 0.0523 0.0801 0.0862 0.1521 0.1619 0.1875
Dandelion EA (SPR1)
Best value 8.8534 10.1535 10.9125 11.4586 11.8786 12.2175
Mean 8.8678 10.1734 10.9388 11.4895 11.9047 12.2492
Standard deviation 0.0119 0.0270 0.0204 0.0198 0.0200 0.0234
Dandelion EA (SPR2)
Best value 8.8862 10.2806 11.0708 11.6603 12.2267 12.7219
Mean 8.9423 10.3623 11.2684 11.8892 12.5441 12.8941
Standard deviation 0.0385 0.0615 0.0694 0.1077 0.1149 0.1493
Dandelion EA (SPR)
Best value 8.8532 10.1498 10.9000 11.4312 11.8441 12.1791
Mean 8.8639 10.1558 10.9106 11.4439 11.8592 12.1953
Standard deviation 0.0083 0.0066 0.0114 0.0075 0.0118 0.0118
LB and Huffman value
Lower bound 8.7304 10.0512 10.8036 11.3297 11.7336 12.0611
Huffman 8.9673 10.2964 11.0318 11.5581 11.9569 12.2781

NSPR: EA without any search space reduction; SPR1: EA working only with the first space reduction; SPR2: EA working only with the second
space reduction; SPR: EA working with both space reductions proposed.

TABLE III

Comparison of the Results (in Seconds) Obtained by the Dandelion EA (Multi-Point Crossover, Roulette Wheel) With and

Without Search Space Reduction, When Service Probabilities Follow a Uniform Distribution

Number of services 50 100 150 200 250 300
Dandelion EA (NSPR)
Best value 10.5558 12.6693 13.9872 14.5584 15.3126 16.0303
Mean 10.7694 12.9346 14.0071 14.8908 15.6012 16.3907
Standard deviation 0.0799 0.2356 0.1300 0.1200 0.1472 0.2292
Dandelion EA (SPR1)
Best value 10.2901 12.0899 13.2636 14.1509 14.6537 15.2246
Mean 10.2975 12.1088 13.3093 14.2337 14.7668 15.3489
Standard deviation 0.0081 0.0194 0.0518 0.0619 0.0735 0.0953
Dandelion EA (SPR2)
Best value 10.4606 12.4422 13.7476 14.4740 15.0689 15.7187
Mean 10.6110 12.6443 13.7638 14.7078 15.3249 16.1467
Standard deviation 0.0554 0.1910 0.1100 0.1078 0.1310 0.1804
Dandelion EA (SPR)
Best value 10.2782 12.0884 13.2566 14.1330 14.6099 15.1614
Mean 10.2812 12.0930 13.2580 14.1453 14.6356 15.1804
Standard deviation 0.0028 0.0089 0.0026 0.0226 0.0253 0.0110
LB and Huffman value
Lower bound 10.2018 11.9975 13.1789 14.0203 14.4959 15.0581
Huffman 10.5058 12.2078 13.4689 14.2535 14.6869 15.2821

NSPR: EA without any search space reduction; SPR1: EA working only with the first space reduction; SPR2: EA working only with the second
space reduction; SPR: EA working with both space reductions proposed.

Section IV-C. For these experiments we consider the proposed
EA with a multi-point crossover operator and roulette wheel
selection, the rest of parameters of the EA are the ones
described in Section IV-D.

Table II shows the results obtained by our approach with
search space size reductions: NSPR stands for the case of
the EA working without any search space reduction, SPR1
stands for the first search space reduction, SPR2 stands for
the second search space reduction, and SPR refers to the
application of the two search space reductions. This table
shows the results for the Zipf probability distribution of

services. Table III shows similar results for the case of uniform
distribution of services. Note that in all cases considered
the proposed EA works much better when the two SPR are
applied. The EA working with SPR1 shows better performance
than the EA working with SPR2. Regarding the comparison
with the Huffman algorithm (reference values also provided
in Tables II and III), note that the EA with SPR obtains
better solutions in terms of the objective function for both
cases (Zipf and uniform distribution of services), however,
the EA without SPR is not able to obtain better results than
the Huffman approach. It is interesting that the EA with the
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TABLE IV

Results (in Seconds) Obtained by the Proposed Evolutionary Algorithm With Different Percentage of Nodes Tested as Root

of the Tree (Services Following a Zipf Probability Distribution)

Number of services 50 100 150 200 250 300
Dandelion EA (best value)
1% 8.8853 10.3204 11.2163 11.8283 12.4154 12.8592
25% 8.8793 10.2565 10.9669 11.6173 12.0339 12.5029
50% 8.8565 10.1574 10.9023 11.4511 11.8663 12.1999
75% 8.8544 10.1498 10.9043 11.4312 11.8560 12.1879
100% 8.8532 10.1493 10.9000 11.4280 11.8441 12.1791
Dandelion EA (mean value)
1% 8.9917 10.5850 11.6305 12.2701 13.0976 13.5997
25% 8.9592 10.4250 11.3734 12.0437 12.5653 13.0832
50% 8.8996 10.2487 11.0504 11.6845 12.2973 12.7432
75% 8.8764 10.1806 10.9481 11.5633 12.1477 12.3909
100% 8.8639 10.1558 10.9106 11.4439 11.8592 12.1953
Dandelion EA (standard deviation)
1% 0.0871 0.1780 0.2506 0.2525 0.3685 0.4277
25% 0.0788 0.1388 0.2509 0.2611 0.3043 0.3651
50% 0.0492 0.1264 0.1934 0.2163 0.3571 0.4135
75% 0.0432 0.0456 0.0983 0.2422 0.3721 0.3361
100% 0.0028 0.0089 0.0026 0.0226 0.0253 0.0110
LB and Huffman value
Lower bound 8.7304 10.0512 10.8036 11.3297 11.7336 12.0611
Huffman 8.9673 10.2964 11.0318 11.5581 11.9569 12.2781

SPR1 is able to improve the results of the Huffman algorithm,
but the EA with the SPR2 is only able to obtain better
results than the Huffman approach for the first (smallest)
instances. The improvement of performance of the EA with
SPR (both reductions of the search space included) is evident
in these experiments. On the other hand, note how close the
results obtained by the EA with SPR are to the entropic
bound.

As conclusion for these experiments, we stress the good
performance of the algorithm when the two proposed pro-
cedures for reducing the search space size are applied. The
reason for this good performance is, of course, that the
algorithm needs to look for the optimal tree in a smaller
search space. In order to measure this reduction, we need to
estimate the number of trees remaining after applying the
search space reductions in a problem with M services. First,
note that if the reduction is not applied, the number of trees
of n nodes is given in [12] as nn−2. Recall that n = 2M − 1
and also that the first M elements are reserved for the tree
services, so the total number of trees (search space size) is in
this case (M − 1)2M−3.

In the case that the first search space reduction is applied,
there are M! ways of sorting M services, among which we
select the best one. Therefore, the search space size in this
case yields

(M − 1)2M−3

M!
. (8)

In the case that the second search space reduction is applied,
there are (M−1)! ways of enumerating those nodes which are
not services, among which we select one. Therefore, the search
space size in this case yields

(M − 1)2M−3

(M − 1)!
. (9)

Fig. 10. Search space size (logarithmic scale) with and without search space
size reductions.

Also, finally, if the two proposed search space size re-
ductions are applied, the minimum possible number of trees
yields

(M − 1)2M−3

M!(M − 1)!
. (10)

Fig. 10 shows the number of trees (search space size in
logarithmic scale) versus the number of services in the tree,
with the different search space size reductions and without
reduction. Note that the reduction of the search space intro-
duced by SPR1 and SPR2 is similar (they only differ in a scale
factor M). Note also the very large reduction of search space
size obtained, including the two proposed search space size
reductions for large values of M (about 200 to 300 leaves).

B. A Note on the Computational Cost of the Algorithm
Regarding the computational cost of the algorithm, it

depends much on the problem instance. For the smallest
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TABLE V

Results (in Seconds) Obtained by the Proposed Evolutionary Algorithm With Different Percentage of Nodes Tested as Root

of the Tree (Services Following a Uniform Probability Distribution)

Number of services 50 100 150 200 250 300
Dandelion EA (best value)
1% 10.2841 12.1943 13.8686 14.8038 15.7507 16.8447
25% 10.2822 12.1784 13.4259 14.6299 15.1360 16.0932
50% 10.2782 12.1133 13.2822 14.2017 14.7140 15.4591
75% 10.2782 12.0892 13.2566 14.1370 14.6234 15.1893
100% 10.2782 12.0884 13.2566 14.1330 14.6099 15.1614
Dandelion EA (mean value)
1% 10.4085 12.7351 14.5776 16.4836 17.3186 18.5386
25% 10.3618 12.5186 14.1260 15.3152 16.3300 17.3227
50% 10.3361 12.3411 13.7213 15.0236 16.0435 16.7326
75% 10.2997 12.1940 13.4325 14.6008 15.3155 15.8346
100% 10.2812 12.0930 13.2580 14.1453 14.6356 15.1804
Dandelion EA (standard deviation)
1% 0.0719 0.4650 0.6502 1.0706 0.9903 1.2525
25% 0.1124 0.2167 0.3668 0.5367 0.7323 0.8141
50% 0.1037 0.1826 0.3521 0.3982 0.6746 0.8508
75% 0.0651 0.1128 0.2422 0.4759 0.4576 0.6719
100% 0.0028 0.0088 0.0026 0.0225 0.0253 0.0110
LB and Huffman value
Lower bound 10.2018 11.9975 13.1789 14.0203 14.4959 15.0581
Huffman 10.5058 12.2078 13.4689 14.2535 14.6869 15.2821

TABLE VI

Results (in Seconds) Obtained by the Dandelion EA Using Different Evolutionary Operators (Services Following a Zipf

Probability Distribution)

Number of services 50 100 150 200 250 300
Dandelion EA (best value)
Multi-point+Roulette wheel 8.8532 10.1498 10.9000 11.4312 11.8441 12.1791
Multi-point+tournament 8.8543 10.1496 10.8945 11.4247 11.8347 12.1705
Two-point+Roulette wheel 8.8525 10.1508 10.8995 11.4336 11.8448 12.1800
Two-point+tournament 8.8491 10.1483 10.8928 11.4230 11.8366 12.1672
Dandelion EA (mean value)
Multi-point+Roulette wheel 8.8639 10.1558 10.9107 11.4439 11.8593 12.1953
Multi-point+tournament 8.8621 10.1627 10.9059 11.4334 11.8423 12.1745
Two-point+Roulette wheel 8.8623 10.1632 10.9153 11.4529 11.8626 12.1939
Two-point+tournament 8.8565 10.1512 10.8982 11.4308 11.8436 12.1719
Dandelion EA (standard deviation)
Multi-point+Roulette wheel 0.0083 0.0066 0.0114 0.0075 0.0118 0.0118
Multi-point+tournament 0.0080 0.0234 0.0119 0.0085 0.0048 0.0037
Two-point+Roulette wheel 0.0082 0.0117 0.0120 0.0103 0.0111 0.0108
Two-point+tournament 0.0094 0.0039 0.0064 0.0069 0.0047 0.0055
LB and Huffman value
Lower bound 8.7304 10.0512 10.8036 11.3297 11.7336 12.0611
Huffman 8.9673 10.2964 11.0318 11.5581 11.9569 12.2781

instance tackled, the one with 50 services, the real computation
time of the complete evolutionary algorithm (including a
complete search space size reduction), in a computer with
an INTEL Core II processor was about 5 s. For the largest
instance with 300 services the computation time was about
300 s. Note that this is the case when all the nodes are tested
as root nodes (as explained in Section IV-B). The question is if
we can control the algorithm’s computation time by reducing
the number of nodes tested as root nodes, and, of course,
how this affects the algorithm performance. To answer these
questions, we have carried out a set of experiments on the
synthetic problems defined above, with different numbers of
services, Zipf and uniform service distributions and different

numbers of nodes tested as a root node in the algorithm.
Tables IV and V show the results of these experiments, and
Fig. 11 shows the computation time for various cases, includ-
ing the computation time of the Huffman algorithm. Note that,
as expected, the best performance of the EA is obtained when
all the nodes are tested to be the root. Fig. 12 shows the
best and mean values obtained with the proposed EA, and the
Huffman value, on average from all the experiments carried
out (from 50 to 300 nodes, Zipf and uniform distributions),
for different numbers of nodes tested as root of the tree.
From this figure it is possible to see that we need to test
about 40% of the roots to beat the Huffman algorithm, and
85% to beat Huffman on average. Regarding the computation
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Fig. 11. Total computation time of the EA with different number of nodes
tested as root of the tree and computation time of the Huffman algorithm.

Fig. 12. Best and mean values obtained with the proposed EA and Huffman
value, on average from all the experiments carried out (from 50 to 300 nodes,
Zipf and uniform distributions), for different number of nodes tested as root
of the tree.

time, it is straightforward that the time complexity reduction
is proportional to the reduction in the number of tested roots,
i.e., testing 50% of the roots reduces the computation time by
a factor of 2. This reduction of the computation time is only
worth if the Huffman algorithm’s performance is improved
(in best value), which is obtained when over 40% of nodes
are tested as root nodes. In this case, the improvement over
Huffman is worth the computational cost.

C. Experiments With Various Types of Selection and Crossover
Operators

Another important aspect of this research is to test the per-
formance of the proposed algorithm using different operators
in the evolutionary search. To do this, we use the same set of
instances as in the previous sections, and we run the proposed
evolutionary algorithm with search space reduction, using two-
point crossover, multi-point crossover, roulette wheel selection
and tournament selection, and compare the performance of the
four possible combinations of these operators (all nodes tested
as possible roots). Tables VI and VII show the results obtained
with the different combinations of operators in the instances
with a Zipf and a uniform probability distribution of services,
respectively. The results show that the proposed EA performs

slightly better using a combination of two-point crossover and
tournament selection for the Zipf probability distribution of
services, than with other combinations of operators. In the case
of uniform distribution of services, multi-point crossover with
tournament selection also provides very good performance,
specially in problems with a large number of services. A
comparison of these results with the Huffman and lower bound
given in Table I shows that in all cases the EA improves the
results of the Huffman approach, and it is quite close to
the entropic bound. Anyway, note that the results obtained by
the proposed EA with different operators are quite similar, in
many cases the differences between different configurations of
the algorithm are not significant. This means that the proposed
approach performs well independently of the chosen set of
crossover and mutation operators.

D. Experiments Involving the Huffman Algorithm

To finish the experimental part of the paper based on
synthetic instances, we carry out a study of the possibility of
using the Huffman algorithm to improve the performance of
the EA. Specifically, we analyze the possibility of initializing
the population of the EA with mutated versions of the Huffman
solution. Tables VIII and IX show the results of a EA with the
best combination possible of selection and crossover operators,
for different percentages of mutation of the initial Huffman
solution, for the case of Zipf and uniform distributions of
services, respectively. First, note that this initialization slightly
improves the performance of the EA in the case of considering
a Zipf distribution of services. This can be seen by comparing
Table VIII with the corresponding Table VI, where the per-
formance of the EA with different operators is shown. This
improvement is more significant in the largest instances, with
200, 250, and 300 services. The performance of the EA with
Huffman initialization in the case of a uniform distribution of
services is quite similar to the EA with random initialization.

A final comparison for showing the good performance of the
Dandelion EA proposed in this paper can be carried out against
a Monte Carlo simulation starting from the Huffman solution.
Specifically, the Monte Carlo simulation is run from the initial
Huffman solution which is randomly mutated (5% of the
elements in the corresponding Dandelion code are changes),
and if a better solution is found, it is considered as the current
solution to apply the next mutation. This process is carried out
for a number of objective function evaluations similar to the
one in the proposed EA, and 30 different runs of the Monte
Carlo simulation have been launched, to analyze the mean
and standard deviation values, such as in the EA case. The
results obtained with the Monte Carlo simulation are shown
in Table X, where results for the Zipf and uniform services
distributions are jointly displayed. Note that the Monte Carlo
simulation works fine, obtaining solutions of good quality for
the problem. However, the proposed EA performs better, as
can be seen in the comparison of Table X, both for the Zipf
and uniform services distributions.

E. Design of a Real Call Center With the Proposed Approach
To illustrate the performance of our approach in a real case,

we tackle the design of a call center for the Italian mobile
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TABLE VII

Results (in Seconds) Obtained by the Dandelion EA Using Different Evolutionary Operators (Services Following a Uniform

Probability Distribution)

Number of services 50 100 150 200 250 300
Dandelion EA (best value)
Multi-point+Roulette wheel 10.2782 12.0884 13.2566 14.1330 14.6099 15.1614
Multi-point+tournament 10.2782 12.0882 13.2559 14.1313 14.6056 15.1412
Two-point+Roulette wheel 10.2782 12.0882 13.2573 14.1348 14.6089 15.1468
Two-point+tournament 10.2782 12.0881 13.2559 14.1318 14.6058 15.1413
Dandelion EA (mean value)
Multi-point+Roulette wheel 10.2812 12.0930 13.2580 14.1454 14.6356 15.1805
Multi-point+tournament 10.2824 12.0901 13.2573 14.1336 14.6073 15.1455
Two-point+Roulette wheel 10.2832 12.0960 13.2740 14.1418 14.6259 15.1660
Two-point+tournament 10.2798 12.0894 13.2569 14.1339 14.6102 15.1526
Dandelion EA (standard deviation)
Multi-point+Roulette wheel 0.0028 0.0089 0.0026 0.0226 0.0254 0.0110
Multi-point+tournament 0.0035 0.0015 0.0013 0.0025 0.0039 0.0050
Two-point+Roulette wheel 0.0052 0.0104 0.0401 0.0063 0.0089 0.0106
Two-point+tournament 0.0019 0.0031 0.0014 0.0037 0.0041 0.0081
LB and Huffman value
Lower bound 10.2018 11.9975 13.1789 14.0203 14.4959 15.0581
Huffman 10.5058 12.2078 13.4689 14.2535 14.6869 15.2821

TABLE VIII

Results (in Seconds) Obtained by the Dandelion EA With Mutations of the Huffman Tree Used to Form the Initial Population

(Services Following a Zipf Probability Distribution)

Number of services 50 100 150 200 250 300
Best value
12.5% 8.8491 10.1483 10.8924 11.4230 11.8339 12.1643
25% 8.8491 10.1483 10.8921 11.4230 11.8343 12.1657
37.5% 8.8491 10.1483 10.8921 11.4230 11.8343 12.1654
50% 8.8491 10.1483 10.8919 11.4233 11.8348 12.1644
Mean
12.5% 8.8532 10.1514 10.8961 11.4270 11.8398 12.1685
25% 8.8519 10.1558 10.9023 11.4311 11.8425 12.2015
37.5% 8.8519 10.1558 10.9023 11.4311 11.8425 12.1963
50% 8.8556 10.1529 10.9026 11.4351 11.8418 12.2106
Standard deviation
12.5% 0.0058 0.0062 0.0063 0.0041 0.0055 0.0043
25% 0.0037 0.0114 0.0097 0.0074 0.0048 0.1620
37.5% 0.0037 0.0114 0.0097 0.0074 0.0048 0.1379
50% 0.0084 0.0087 0.0095 0.0084 0.0045 0.2146
LB and Huffman value
Lower bound 8.7304 10.0512 10.8036 11.3297 11.7336 12.0611
Huffman 8.9673 10.2964 11.0318 11.5581 11.9569 12.2781

operator TIM. TIM is now the mobile brand of the Italian
operator Telecom Italia, while formerly it was a separate
company (though owned by Telecom Italia itself). At present
it can boast a share of 39.4% of the Italian mobile market,
with 36 millions mobile lines. In this paper, we examine the
redesign of the customer care service call center, offered by
TIM through its “green” number 119. The IVR (service tree)
used by TIM is formed by 50 different services, structured as
shown in Fig. 13. Table XI shows the probabilities associated
to each service, obtained from the company. This initial service
tree is representative of a call center managing a very large
number of customers each day, with very different range of
services. The entropic bound for this real system is 179.3241 s.
Fig. 14 shows the best tree obtained for the TIM call center
with the proposed approach, with an average time of users
in the system (objective function value) of 181.0245. On the

other hand, Fig. 15 shows the tree obtained with the Huffman
algorithm, with an average time of 185.9082, almost 6 s worse
than the best tree obtained with our approach.

In this real example, we also test the possibility of including
constraints on grouping the nodes. A company owning the call
center may wish to group certain services to better structure
the call center. In this case, our algorithm is still applicable:
let us suppose that we want to group services s1, s2, and s3,
with probabilities p1, p2, and p3, respectively. The idea is to
form an auxiliary node which represents s1, s2, and s3, with
a probability pa =

∑3
i=1 pi. Then the EA is run using this

auxiliary service, and a tree T ∗ is obtained. The auxiliary node
a is then expanded to represent again nodes s1, s2, and s3,
so the tree is now the complete one (T ) with the objective
function given in this case by f (T ) = f (T ∗) + 3 · ∑3

i=1 pi.
Note that the 3 in the fitness function refers to the fact that
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TABLE IX

Results (in Seconds) Obtained by the Dandelion EA With Mutations of the Huffman Tree Used to Form the Initial Population

(Services Following a Uniform Probability Distribution)

Number of services 50 100 150 200 250 300
Best value
12.5% 10.2782 12.0881 13.2556 14.1314 14.6063 15.1414
25% 10.2782 12.0881 13.2557 14.1313 14.6065 15.1413
37.5% 10.2782 12.0881 13.2556 14.1314 14.6063 15.1412
50% 10.2782 12.0881 13.2557 14.1313 14.6056 15.1417
Mean
12.5% 10.2833 12.0913 13.2565 14.1338 14.6131 15.1596
25% 10.2805 12.0904 13.2567 14.1327 14.6117 15.1485
37.5% 10.2833 12.0913 13.2565 14.1338 14.6131 15.1596
50% 10.2807 12.0901 13.3022 14.1325 14.8212 15.1527
Standard deviation
12.5% 0.0047 0.0082 0.0009 0.0038 0.0127 0.0264
25% 0.0029 0.0054 0.0012 0.0017 0.0049 0.0065
37.5% 0.0047 0.0082 0.0009 0.0038 0.0127 0.0420
50% 0.0032 0.0047 0.2518 0.0016 0.6536 0.0080
LB and Huffman value
Lower bound 10.2018 11.9975 13.1789 14.0203 14.4959 15.0581
Huffman 10.5058 12.2078 13.4689 14.2535 14.6869 15.2821

TABLE X

Results (in Seconds) Obtained Using a Monte Carlo Method Starting From the Huffman Tree (Services Following Zipf

and Uniform Distributions)

Number of services 50 100 150 200 250 300
Monte Carlo from Huffman (Zipf)
Best value 8.8517 10.1511 10.8961 11.4286 11.8374 12.1723
Mean 8.8736 10.2238 10.9261 11.5012 11.9015 12.2369
Standard deviation 0.0171 0.0556 0.0439 0.0550 0.0454 0.0390
LB, Huffman, and EA results
Lower bound 8.7304 10.0512 10.8036 11.3297 11.7336 12.0611
Huffman 8.9673 10.2964 11.0318 11.5581 11.9569 12.2781
EA best 8.8491 10.1483 10.8924 11.4230 11.8339 12.1643
Monte Carlo from Huffman (uniform)
Best value 10.2878 12.0938 13.2676 14.1374 14.6354 15.1606
Mean 10.3657 12.1684 13.3485 14.1970 14.6767 15.2258
Standard deviation 0.0583 0.0407 0.0640 0.0382 0.0141 0.0440
LB, Huffman, and EA results
Lower bound 10.2018 11.9975 13.1789 14.0203 14.4959 15.0581
Huffman 10.5058 12.2078 13.4689 14.2535 14.6869 15.2821
EA best 10.2782 12.0881 13.2556 14.1313 14.6056 15.1412

The entropic lower bound, the initial Huffman value, and the best value obtained with the proposed EA are also shown for comparison.

TABLE XI

Service Probabilities for the TIM Call Center

Node Prob. (%) Node Prob. (%) Node Prob. (%) Node Prob. (%) Node Prob. (%)
1 11.8998 11 0.0813 21 2.7703 31 3.0268 41 2.9683
2 1.9627 12 0.2413 22 1.6476 32 0.8785 42 1.9085
3 1.0670 13 1.8517 23 0.8600 33 2.4605 43 1.6544
4 1.3318 14 0.9814 24 0.7593 34 1.9374 44 0.9889
5 2.4261 15 5.4547 25 4.1258 35 1.0288 45 5.0186
6 0.9723 16 0.9598 26 0.2508 36 4.1902 46 2.6290
7 2.7217 17 0.1676 27 1.8098 37 0.2462 47 1.2070
8 1.9713 18 2.8786 28 1.7442 38 0.0958 48 3.0028
9 0.7559 19 0.1113 29 0.0004 39 0.2514 49 0.0453

10 0.3198 20 6.4028 30 3.0777 40 0.8317 50 4.0256
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Fig. 13. Initial service tree used by TIM (not optimized).

Fig. 14. Optimized tree with the Dandelion EA for the TIM call center.
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Fig. 15. Tree obtained using the Huffman algorithm, for the TIM call center.

Fig. 16. Tree obtained using the EA in the case of including two groups of
services constraint.

we are dealing with grouping three nodes. In order to show
an example of this procedure, let us consider the design of the
TIM call center with two groups of services, on one hand s2,
s3, and s4 and on the other hand s18, s19, s20, and s21. Fig. 16
shows the final service tree obtained with the EA and services
groups constraint (groups of services in boldface). In this case,
the average time of this tree is 192.509, whereas the Huffman
algorithm obtains a tree with an average time of 195.8301.

VI. Conclusion

This paper has proposed an evolutionary algorithm for
designing interactive voice response systems within call center
systems in an optimal way. The problem is equivalent to the
design of an oriented tree with the minimum average service
time. The proposed evolutionary algorithm uses an encoding
based on the Dandelion code, recently proposed as a good
technique for tree encoding in heuristic algorithms. Several
modifications of the Dandelion encoding have been applied in

order to adapt it to the specific problem tackled and to improve
the performance of the algorithm. Specifically, two search
space size reduction procedures have been presented which
improves the quality of the solutions found by the evolutionary
algorithm. Systematic experiments have been carried out in
order to test the performance of our approach, including a
real case of the design of a call center for an Italian mobile
telecommunications company. The results obtained showed
that our approach is able to obtain very good services trees
improving the results of a Huffman approach and very close
to a lower bound (entropic bound) for the problem. As future
work, we can consider the recursive use of the algorithm
for the case of grouping services in such a way that tree
substructures can be considered for the nodes which must be
grouped. Also, the joint optimization of the IVR part and
human part of the call centers can be accomplished with
certain modifications in the algorithm.
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Politécnica Superior, Universidad de Alcalá, Madrid, Spain. He has co-
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