20,872 research outputs found
Discovery of a deep Seyfert-2 galaxy at z = 0.222 behind NGC 300
We report on the unveiling of the nature of the unidentified X-ray source
3XMM J005450.3-373849 as a Seyfert-2 galaxy located behind the spiral galaxy
NGC 300 using Hubble Space Telescope data, new spectroscopic Gemini
observations and available XMM-Newton and Chandra data. We show that the X-ray
source is positionally coincident with an extended optical source, composed by
a marginally resolved nucleus/bulge, surrounded by an elliptical disc-like
feature and two symmetrical outer rings. The optical spectrum is typical of a
Seyfert-2 galaxy redshifted to z=0.222 +/- 0.001, which confirms that the
source is not physically related to NGC 300. At this redshift the source would
be located at 909+/-4 Mpc (comoving distance in the standard model). The X-ray
spectra of the source are well-fitted by an absorbed power-law model. By tying
between the six available spectra, we found a variable index
running from ~2 in 2000-2001 years, to 1.4-1.6 in the 2005-2014
period. Alternatively, by tying , we found variable absorption columns
of N_H ~ 0.34 x cm in 2000-2001 years, and 0.54-0.75 x
cm in the 2005-2014 period. Although we cannot distinguish
between an spectral or absorption origin, from the derived unabsorbed X-ray
fluxes, we are able to assure the presence of long-term X-ray variability.
Furthermore, the unabsorbed X-ray luminosities of 0.8-2 x 10 erg
s derived in the X-ray band are in agreement with a weakly obscured
Seyfert-2 AGN at .Comment: MNRAS, accepte
Allatotropin Neuropeptide Signaling, Juvenile Hormone Homeostasis and the Aedes Aegypti Gonotrophic Cycle
Nutrient homeostasis is intrinsically linked to mosquito behavior. Female mosquitoes use vertebrate blood meals to nourish their eggs. After a female mosquito ingests a blood meal, she abruptly shifts her behavior. No longer does she seek human hosts, she now avoids them and rests away from predation while her eggs develop. Then, the female mosquito searches for standing water where she will lay her eggs. Only after the female deposits her eggs is attraction to host stimuli recovered and the gonotrophic cycle begins anew. The gonotrophic cycle in Aedes aegypti is clearly defined, but the molecular mechanism that links nutrient levels, oogenesis, and behavior is poorly understood. Juvenile hormone (JH) levels show stereotyped changes during the gonotrophic cycle and regulate oogenesis, but the behavioral role of JH is unknown. Allatotropin neuropeptide signaling has been previously shown to promote JH production. When nutrient levels are high in the adult female, JH levels are increased and her reproductive capacity is maximized. Although allatotropin has been implicated in the regulation of JH, a role for allatotropin signaling in feeding behavior has not been shown and genetic analysis of this pathway may provide insight into the behavioral role of JH. Using a genome editing approach, we seek to disrupt the function of both the allatotropin neuropeptide and its receptor to assess the role of this signaling pathway in JH synthesis and mosquito foraging behaviors
Radiative corrections to from three generations of Majorana neutrinos and sneutrinos
In this work we study the radiative corrections to the mass of the lightest
Higgs boson of the MSSM from three generations of Majorana neutrinos and
sneutrinos. The spectrum of the MSSM is augmented by three right handed
neutrinos and their supersymmetric partners. A seesaw mechanism of type I is
used to generate the physical neutrino masses and oscillations that we require
to be in agreement with present neutrino data. We present a full one-loop
computation of these Higgs mass corrections, and analyze in full detail their
numerical size in terms of both the MSSM and the new (s)neutrino parameters. A
critical discussion on the different possible renormalization schemes and their
implications is included.Comment: 42 pages, 39 figures, 1 appendix, version published in AHE
Development of a species-specific coproantigen ELISA for human taenia solium taeniasis
Taenia solium causes human neurocysticercosis and is endemic in underdeveloped countries where backyard pig keeping is common. Microscopic fecal diagnostic methods for human T. solium taeniasis are not very sensitive, and Taenia saginata and Taenia solium eggs are indistinguishable under the light microscope. Coproantigen (CoAg) ELISA methods are very sensitive, but currently only genus (Taenia) specific. This paper describes the development of a highly species-specific coproantigen ELISA test to detect T. solium intestinal taeniasis. Sensitivity was maintained using a capture antibody of rabbit IgG against T. solium adult whole worm somatic extract, whereas species specificity was achieved by utilization of an enzyme-conjugated rabbit IgG against T. solium adult excretory-secretory (ES) antigen. A known panel of positive and negative human fecal samples was tested with this hybrid sandwich ELISA. The ELISA test gave 100% specificity and 96.4% sensitivity for T. solium tapeworm carriers (N = 28), with a J index of 0.96. This simple ELISA incorporating anti-adult somatic and anti-adult ES antibodies provides the first potentially species-specific coproantigen test for human T. solium taeniasis
Insights into the Carbon chemistry of Mon R2
Aiming to learn about the chemistry of the dense PDR around the ultracompact
(UC) HII region in Mon R2, we have observed a series of mm-wavelength
transitions of C3H2 and C2H. In addition, we have traced the distribution of
other molecules, such as H13CO+, SiO, HCO, and HC3N. These data, together with
the reactive ions recently detected, have been considered to determine the
physical conditions and to model the PDR chemistry. We then identified two kind
of molecules. The first group, formed by the reactive ions (CO+, HOC+) and
small hydrocarbons (C2H, C3H2), traces the surface layers of the PDR and is
presumably exposed to a high UV field (hence we called it as "high UV", or
HUV). HUV species is expected to dominate for visual absorptions 2 < Av < 5
mag. A second group (less exposed to the UV field, and hence called "low UV",
or LUV) includes HCO and SiO, and is mainly present at the edges of the PDR (Av
> 5 mag). While the abundances of the HUV molecules can be explained by gas
phase models, this is not the case for the studied LUV ones. Although some
efficient gas-phase reactions might be lacking, grain chemistry sounds like a
probable mechanism able to explain the observed enhancement of HCO and SiO.
Within this scenario, the interaction of UV photons with grains produces an
important effect on the molecular gas chemistry and constitutes the first
evidence of an ionization front created by the UC HII region carving its host
molecular cloud. The physical conditions and kinematics of the gas layer which
surrounds the UC HII region were derived from the HUV molecules. Molecular
hydrogen densities > 4 10^6 cm^(-3) are required to reproduce the observations.
Such high densities suggest that the HII region could be pressure-confined by
the surrounding high density molecular gas.Comment: 32 pages, 8 figures. Accepted by Astrophysical Journa
Thermalization and Cooling of Plasmon-Exciton Polaritons: Towards Quantum Condensation
We present indications of thermalization and cooling of quasi-particles, a
precursor for quantum condensation, in a plasmonic nanoparticle array. We
investigate a periodic array of metallic nanorods covered by a polymer layer
doped with an organic dye at room temperature. Surface lattice resonances of
the array---hybridized plasmonic/photonic modes---couple strongly to excitons
in the dye, and bosonic quasi-particles which we call
plasmon-exciton-polaritons (PEPs) are formed. By increasing the PEP density
through optical pumping, we observe thermalization and cooling of the strongly
coupled PEP band in the light emission dispersion diagram. For increased
pumping, we observe saturation of the strong coupling and emission in a new
weakly coupled band, which again shows signatures of thermalization and
cooling.Comment: 8 pages, 5 figures including supplemental material. The newest
version includes new measurements and corrections to the interpretation of
the result
Characterization of slow and fast phase nystagmus
A current literature review of the analog and digital process of vestibular and optical kinetic nystagmus reveals little agreement in the methods used by various labs. The strategies for detection of saccade (fast phase velocity component of nystagmus) vary between labs, and most of the process have not been evaluated and validated with a standard database. A survey was made of major vestibular labs in the U.S. that perform computer analyses of vestibular and optokinetic reflexes to stimuli, and a baseline was established from which to standardize data acquisition and analysis programs. The concept of an Error Index was employed as the criterium for evaluating the performance of the vestibular analysis software programs. The performance criterium is based on the detection of saccades and is the average of the percentages of missed detections and false detections. Evaluation of the programs produced results for lateral gaze with saccadic amplitude of one, two, three, five, and ten degrees with various signal-to-noise ratios. In addition, results were obtained for sinusoidal pursuit of 0.05, 0.10, and 0.50 Hz with saccades from one to ten degrees at various signal-to-noise ratios. Selection of the best program was made from the performance in the lateral gaze with three degrees of saccadic amplitude and in the 0.10 Hz sinusoid with three degrees of saccadic amplitude
An efficient algorithm to perform local concerted movements of a chain molecule
The devising of efficient concerted rotation moves that modify only selected local portions of chain molecules is a long studied problem. Possible applications range from speeding the uncorrelated sampling of polymeric dense systems to loop reconstruction and structure refinement in protein modeling. Here, we propose and validate, on a few pedagogical examples, a novel numerical strategy that generalizes the notion of concerted rotation. The usage of the Denavit-Hartenberg parameters for chain description allows all possible choices for the subset of degrees of freedom to be modified in the move. They can be arbitrarily distributed along the chain and can be distanced between consecutive monomers as well. The efficiency of the methodology capitalizes on the inherent geometrical structure of the manifold defined by all chain configurations compatible with the fixed degrees of freedom. The chain portion to be moved is first opened along a direction chosen in the tangent space to the manifold, and then closed in the orthogonal space. As a consequence, in Monte Carlo simulations detailed balance is easily enforced without the need of using Jacobian reweighting. Moreover, the relative fluctuations of the degrees of freedom involved in the move can be easily tuned. We show different applications: the manifold of possible configurations is explored in a very efficient way for a protein fragment and for a cyclic molecule; the "local backbone volume", related to the volume spanned by the manifold, reproduces the mobility profile of all-α helical proteins; the refinement of small protein fragments with different secondary structures is addressed. The presented results suggest our methodology as a valuable exploration and sampling tool in the context of bio-molecular simulations
- âŠ