33 research outputs found

    Role of IL-17 in Morphogenesis and Dissemination of Cryptococcus neoformans during Murine Infection

    Get PDF
    Cryptococcus neoformans is a pathogenic yeast that can form Titan cells in the lungs, which are fungal cells of abnormally large size. The factors that regulate Titan cell formation in vivo are still unknown, although an increased proportion of these fungal cells of infected mice correlates with induction of Th2-type responses. Here, we focused on the role played by the cytokine IL-17 in the formation of cryptococcal Titan cells using Il17a-/- knockout mice. We found that after 9 days of infection, there was a lower proportion of Titan cells in Il17a-/- mice compared to the fungal cells found in wild-type animals. Dissemination to the brain occurred earlier in Il17a-/- mice, which correlated with the lower proportion of Titan cells in the lungs. Furthermore, knockout-infected mice increased brain size more than WT mice. We also determined the profile of cytokines accumulated in the brain, and we found significant differences between both mouse strains. We found that in Il17a-/-, there was a modest increase in the concentrations of the Th1 cytokine TNF-α. To validate if the increase in this cytokine had any role in cryptococcal morphogenesis, we injected wild-type mice with TNF-α t and observed that fungal cell size was significantly reduced in mice treated with this cytokine. Our results suggest a compensatory production of cytokines in Il17a-/- mice that influences both cryptococcal morphology and dissemination.This work was supported by Grant SAF2017-86912-R and PID 2020-114546RB-100 from the Spanish Ministry for Science and Innovation. Roselletti E. is funded by an international collaboration with the company Lesaffre International Sarl. Garcia-Rodas R. is funded by a “Juan de la Cierva” contract from the Spanish Ministry for Economics, Industry, and Competitivity (Reference: IJCI-2015-25683). Trevijano-Contador N. is funded by an “Ayudas de Atracción de Talento Investigador” contract of the Community of Madrid (Reference: 2019-T2/BMD-14926).S

    Accumulation of endogenous free radicals is required to induce titan-like cell formation in Cryptococcus neoformans

    Get PDF
    Cryptococcus neoformans is an excellent model to investigate fungal pathogenesis. This yeast can produce "titan cells," which are cells of an abnormally larger size that contribute to the persistence of the yeast in the host. In this work, we have used a new approach to characterize them by identifying drugs that inhibit this process. We have used a repurposing off-patent drug library, combined with an automatic method to image and analyze fungal cell size. In this way, we have identified many compounds that inhibit this transition. Interestingly, several compounds were antioxidants, allowing us to confirm that endogenous ROS and mitochondrial changes are important for titan cell formation. This work provides new evidence of the mechanisms required for titanization. Furthermore, the future characterization of the inhibitory mechanisms of the identified compounds by the scientific community will contribute to better understand the role of titan cells in virulence.Oscar Zaragoza was funded by grant PID2020-114546RB by MCIN/AEI/10.13039/501100011033 and by grant SAF2017-86912-R from the Spanish Ministry for Science and Innovation. Irene García-Barbazán was funded by the Ministry for Science and Innovation (contract FPI PRE2018-083436). Alba Torres-Cano was funded by the Ministry for Science and Innovation (contract FPI PRE2021-099486). Rocío García-Rodas was funded by a “Juan de la Cierva” Contract from the Spanish Ministry for Economics, Industry and Competitivity (reference: IJCI-2015-25683).S

    Phosphatidylinositol-4-phosphate-dependent membrane traffic is critical for fungal filamentous growth

    Get PDF
    International audienceThe phospholipid phosphatidylinositol-4-phosphate [PI(4)P], generated at the Golgi and plasma membrane, has been implicated in many processes, including membrane traffic, yet its role in cell morphology changes, such as the budding to filamentous growth transition, is unknown. We show that Golgi PI(4)P is required for such a transition in the human pathogenic fungus Candida albicans. Quantitative analyses of membrane traffic revealed that PI(4)P is required for late Golgi and secretory vesicle dynamics and targeting and, as a result, is important for the distribution of a multidrug transporter and hence sensitivity to antifungal drugs. We also observed that plasma membrane PI(4)P, which we show is functionally distinct from Golgi PI(4)P, forms a steep gradient concomitant with filamentous growth, despite uniform plasma membrane PI-4-kinase distribution. Mathematical modeling indicates that local PI(4)P generation and hydrolysis by phosphatases are crucial for this gradient. We conclude that PI(4)P-regulated membrane dynamics are critical for morphology changes. membrane traffic | filamentous growth | polarity | morphogenesis

    Role of Cln1 during melanization of Cryptococcus neoformans

    Get PDF
    Cryptococcus neoformans is an opportunistic fungal pathogen that has several well-described virulence determinants. A polysaccharide capsule and the ability to produce melanin are among the most important. Melanization occurs both in vitro, in the presence of catecholamine and indole compounds, and in vivo during the infection. Despite the importance of melanin production for cryptococcal virulence, the component and mechanisms involved in its synthesis have not been fully elucidated. In this work, we describe the role of a G1/S cyclin (Cln1) in the melanization process. Cln1 has evolved specifically with proteins present only in other basidiomycetes. We found that Cln1 is required for the cell wall stability and production of melanin in C. neoformans. Absence of melanization correlated with a defect in the expression of the LAC1 gene. The relation between cell cycle elements and melanization was confirmed by the effect of drugs that cause cell cycle arrest at a specific phase, such as rapamycin. The cln1 mutant was consistently more susceptible to oxidative damage in a medium that induces melanization. Our results strongly suggest a novel and hitherto unrecognized role for C. neoformans Cln1 in the expression of virulence traits.We thank Rajendra Uphadya (Washington University School of Medicine, St. Louis, MI, USA) for providing the sequence of oligonucleotides for 18s gene used in this article. RG-R was supported by a FPI fellowship (reference BES-2009-015913) from the Spanish Ministry of Economics and Competitivity. NT-C is supported by a FPI fellowship (reference BES-2012-051837). OZ is funded by grant SAF2011-25140 and SAF2014-54336 from the Spanish Ministry for Economics and CompetitivityS

    Capsule growth in Cryptococcus neoformans is coordinated with cell cycle progression

    Get PDF
    UNLABELLED: The fungal pathogen Cryptococcus neoformans has several virulence factors, among which the most important is a polysaccharide capsule. The size of the capsule is variable and can increase significantly during infection. In this work, we investigated the relationship between capsular enlargement and the cell cycle. Capsule growth occurred primarily during the G1 phase. Real-time visualization of capsule growth demonstrated that this process occurred before the appearance of the bud and that capsule growth arrested during budding. Benomyl, which arrests the cells in G2/M, inhibited capsule growth, while sirolimus (rapamycin) addition, which induces G1 arrest, resulted in cells with larger capsule. Furthermore, we have characterized a mutant strain that lacks a putative G1/S cyclin. This mutant showed an increased capacity to enlarge the capsule, both in vivo (using Galleria mellonella as the host model) and in vitro. In the absence of Cln1, there was a significant increase in the production of extracellular vesicles. Proteomic assays suggest that in the cln1 mutant strain, there is an upregulation of the glyoxylate acid cycle. Besides, this cyclin mutant is avirulent at 37°C, which correlates with growth defects at this temperature in rich medium. In addition, the cln1 mutant showed lower intracellular replication rates in murine macrophages. We conclude that cell cycle regulatory elements are involved in the modulation of the expression of the main virulence factor in C. neoformans. IMPORTANCE: Cryptococcus neoformans is a pathogenic fungus that has significant incidence worldwide. Its main virulence factor is a polysaccharide capsule that can increase in size during infection. In this work, we demonstrate that this process occurs in a specific phase of the cell cycle, in particular, in G1. In agreement, mutants that have an abnormal longer G1 phase show larger capsule sizes. We believe that our findings are relevant because they provide a link between capsule growth, cell cycle progression, and virulence in C. neoformans that reveals new aspects about the pathogenicity of this fungus. Moreover, our findings indicate that cell cycle elements could be used as antifungal targets in C. neoformans by affecting both the growth of the cells and the expression of the main virulence factor of this pathogenic yeast.O.Z. is funded by grants SAF2008-03761 and SAF2011-25140 from the Spanish Ministry for Economics and Competitivity. R.G.-R. is supported by an FPI fellowship (reference BES-2009-015913) from the Spanish Ministry of Science and Innovation. N.T.-C. is supported by an FPI fellowship (reference BES-2012-051837) from the Spanish Ministry for Economics and Competitivity. A.C. is supported by NIH grants HL059842-3, A1033774, A1052733, and AI033142. R.J.B.C. is supported by T32 AI07506 (NIH/NIAID).S

    Plasma Membrane Phosphatidylinositol-4-Phosphate Is Not Necessary for Candida albicans Viability yet Is Key for Cell Wall Integrity and Systemic Infection

    Get PDF
    Phosphatidylinositol phosphates are key phospholipids with a range of regulatory roles, including membrane trafficking and cell polarity. Phosphatidylinositol-4-phosphate [PI(4)P] at the Golgi apparatus is required for the budding-to-filamentous-growth transition in the human-pathogenic fungus Candida albicans; however, the role of plasma membrane PI(4)P is unclear. We have investigated the importance of this phospholipid in C. albicans growth, stress response, and virulence by generating mutant strains with decreased levels of plasma membrane PI(4)P, via deletion of components of the PI-4-kinase complex, i.e., Efr3, Ypp1, and Stt4. The amounts of plasma membrane PI(4)P in the efr3Δ/Δ and ypp1Δ/Δ mutants were ∼60% and ∼40%, respectively, of that in the wild-type strain, whereas it was nearly undetectable in the stt4Δ/Δ mutant. All three mutants had reduced plas7ma membrane phosphatidylserine (PS). Although these mutants had normal yeast-phase growth, they were defective in filamentous growth, exhibited defects in cell wall integrity, and had an increased exposure of cell wall β(1,3)-glucan, yet they induced a range of hyphal-specific genes. In a mouse model of hematogenously disseminated candidiasis, fungal plasma membrane PI(4)P levels directly correlated with virulence; the efr3Δ/Δ mutant had wild-type virulence, the ypp1Δ/Δ mutant had attenuated virulence, and the stt4Δ/Δ mutant caused no lethality. In the mouse model of oropharyngeal candidiasis, only the ypp1Δ/Δ mutant had reduced virulence, indicating that plasma membrane PI(4)P is less important for proliferation in the oropharynx. Collectively, these results demonstrate that plasma membrane PI(4)P levels play a central role in filamentation, cell wall integrity, and virulence in C. albicans. Importance: While the PI-4-kinases Pik1 and Stt4 both produce PI(4)P, the former generates PI(4)P at the Golgi apparatus and the latter at the plasma membrane, and these two pools are functionally distinct. To address the importance of plasma membrane PI(4)P in Candida albicans, we generated deletion mutants of the three putative plasma membrane PI-4-kinase complex components and quantified the levels of plasma membrane PI(4)P in each of these strains. Our work reveals that this phosphatidylinositol phosphate is specifically critical for the yeast-to-hyphal transition, cell wall integrity, and virulence in a mouse systemic infection model. The significance of this work is in identifying a plasma membrane phospholipid that has an infection-specific role, which is attributed to the loss of plasma membrane PI(4)P resulting in β(1,3)-glucan unmasking.This work was supported by the CNRS, INSERM, Université Côte d’Azur, and ANR (ANR-11-LABX-0028-01, ANR-16-CE13-0010-01, and ANR-19-CE13-0004-01) grants, by grant R01DE026600 from the U.S. NIH, and grant SAF2017-86192 from the Spanish Ministry for Science and Innovation. R.G.-R. is a Prestige and Marie Curie Postdoctoral Fellow (funded in part by a PCOFUND- GA-2013-609102 coordinated by Campus France).S

    Cryptococcus neoformans can form titan-like cells in vitro in response to multiple signals

    Get PDF
    Cryptococcus neoformans is an encapsulated pathogenic yeast that can change the size of the cells during infection. In particular, this process can occur by enlarging the size of the capsule without modifying the size of the cell body, or by increasing the diameter of the cell body, which is normally accompanied by an increase of the capsule too. This last process leads to the formation of cells of an abnormal enlarged size denominated titan cells. Previous works characterized titan cell formation during pulmonary infection but research on this topic has been hampered due to the difficulty to obtain them in vitro. In this work, we describe in vitro conditions (low nutrient, serum supplemented medium at neutral pH) that promote the transition from regular to titan-like cells. Moreover, addition of azide and static incubation of the cultures in a CO2 enriched atmosphere favored cellular enlargement. This transition occurred at low cell densities, suggesting that the process was regulated by quorum sensing molecules and it was independent of the cryptococcal serotype/species. Transition to titan-like cell was impaired by pharmacological inhibition of PKC signaling pathway. Analysis of the gene expression profile during the transition to titan-like cells showed overexpression of enzymes involved in carbohydrate metabolism, as well as proteins from the coatomer complex, and related to iron metabolism. Indeed, we observed that iron limitation also induced the formation of titan cells. Our gene expression analysis also revealed other elements involved in titan cell formation, such as calnexin, whose absence resulted in appearance of abnormal large cells even in regular rich media. In summary, our work provides a new alternative method to investigate titan cell formation devoid the bioethical problems that involve animal experimentation.OZ is funded by grant SAF2014-54336-R and SAF2017-86192-R1 from the Spanish Ministry for Economics, Industry and Competitivity. JA is funded by grants BFU2014-54591-C2-1-P and BFU2017-82574-P (Spanish Ministry for Economics, Industry and Competitivity) and an “Ajut 2014SGR-4” (Generalitat de Catalunya). NT-C was supported by a FPI fellowship (reference BES-2012-051837). SAR was supported by a fellowship from Coordenação de aperfeiçoamento de pessoal de nivel superior, CAPES, program Ciências Sem Fronteiras (202436/2015-2). HCdO is funded by postdoctoral fellowship from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP-BEPE 2016/20631-3). RG-R is funded by a "Juan de la Cierva" Contract from the Spanish Ministry for Economics, Industry and Competitivity (reference: IJCI-2015-25683). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.S

    Two distinct lipid transporters together regulate invasive filamentous growth in the human fungal pathogen Candida albicans

    Get PDF
    Abstract Flippases transport lipids across the membrane bilayer to generate and maintain asymmetry. The human fungal pathogen Candida albicans has 5 flippases, including Drs2, which is critical for filamentous growth and phosphatidylserine (PS) distribution. Furthermore, a drs2 deletion mutant is hypersensitive to the antifungal drug fluconazole and copper ions. We show here that such a flippase mutant also has an altered distribution of phosphatidylinositol 4-phosphate [PI(4)P], and ergosterol. Analyses of additional lipid transporters, i.e. the flippases Dnf1-3, and all the oxysterol binding protein (Osh) family lipid transfer proteins, i.e. Osh2-4 and Osh7, indicate that they are not critical for filamentous growth. However, deletion of Osh4 alone, which exchanges PI(4)P for sterol, in a drs2 mutant can bypass the requirement for this flippase in invasive filamentous growth. In addition, deletion of the lipid phosphatase Sac1, which dephosphorylates PI(4)P, in a drs2 mutant results in a synthetic growth defect, suggesting that Drs2 and Sac1 function in parallel pathways. Together, our results indicate that a balance between the activities of two different classes of lipid transporters regulates invasive filamentous growth, via PI(4)P. In contrast, deletion of OSH4 in drs2 does not restore growth on fluconazole, nor on papuamide A, a toxin that binds PS in the outer leaflet of the plasma membrane, suggesting that Drs2 has additional role(s) in plasma membrane organization, independent of Osh4. As we show that C. albicans Drs2 localizes to different structures, including the Spitzenkörper, we sought to determine if a specific localization of Drs2 is critical for different functions, using a synthetic physical interaction approach to restrict/stabilize Drs2 at the Spitzenkörper. Our results suggest that Drs2 plasma membrane localization is critical for C. albicans growth on fluconazole and papuamide A, but not for invasive filamentous growth
    corecore