2,762 research outputs found

    Identification of red supergiants in nearby galaxies with mid-IR photometry

    Full text link
    The role of episodic mass loss in massive star evolution is one of the most important open questions of current stellar evolution theory. Episodic mass loss produces dust and therefore causes evolved massive stars to be very luminous in the mid-infrared and dim at optical wavelengths. We aim to increase the number of investigated luminous mid-IR sources to shed light on the late stages of these objects. To achieve this we employed mid-IR selection criteria to identity dusty evolved massive stars in two nearby galaxies. The method is based on mid-IR colors, using 3.6 {\mu}m and 4.5 {\mu}m photometry from archival Spitzer Space Telescope images of nearby galaxies and J-band photometry from 2MASS. We applied our criteria to two nearby star-forming dwarf irregular galaxies, Sextans A and IC 1613, selecting eight targets, which we followed up with spectroscopy. Our spectral classification and analysis yielded the discovery of two M-type supergiants in IC 1613, three K-type supergiants and one candidate F-type giant in Sextans A, and two foreground M giants. We show that the proposed criteria provide an independent way for identifying dusty evolved massive stars, that can be extended to all nearby galaxies with available Spitzer/IRAC images at 3.6 {\mu}m and 4.5 {\mu}m.Comment: 8 pages, 4 figures, A&A in pres

    Variable stars in the globular cluster M28 (NGC 6626)

    Full text link
    We present a new search for variable stars in the Galactic globular cluster M28 (NGC 6626). The search is based on a series of BVI images obtained with the SMARTS Consortium's 1.3m telescope at Cerro Tololo Inter-American Observatory, Chile. The search was carried out using the ISIS v2.2 image subtraction package. We find a total of 25 variable stars in the field of the cluster, 9 being new discoveries. Of the newly found variables, 1 is an ab-type RR Lyrae star, 6 are c-type RR Lyrae, and 2 are long-period/semi-regular variables. V22, previously classified as a type II Cepheid, appears as a bona-fide RRc in our data. In turn, V20, previously classified as an ab-type RR Lyrae, could not be properly phased with any reasonable period. The properties of the ab-type RR Lyrae stars in M28 appear most consistent with an Oosterhoff-intermediate classification, which is unusual for bona-fide Galactic globulars clusters. However, the cluster's c-type variables do not clearly support such an Oosterhoff type, and a hybrid Oosterhoff I/II system is accordingly another possibility, thus raising the intriguing possibility of multiple populations being present in M28. Coordinates, periods, and light curves in differential fluxes are provided for all the detected variables.Comment: A&A, in pres

    Multi-agent robotic systems and exploration algorithms: Applications for data collection in construction sites

    Full text link
    The construction industry has been notoriously slow to adopt new technology and embrace automation. This has resulted in lower efficiency and productivity compared to other industries where automation has been widely adopted. However, recent advancements in robotics and artificial intelligence offer a potential solution to this problem. In this study, a methodology is proposed to integrate multi-robotic systems in construction projects with the aim of increasing efficiency and productivity. The proposed approach involves the use of multiple robot and human agents working collaboratively to complete a construction task. The methodology was tested through a case study that involved 3D digitization of a small, occluded space using two robots and one human agent. The results show that integrating multi-agent robotic systems in construction can effectively overcome challenges and complete tasks efficiently. The implications of this study suggest that multi-agent robotic systems could revolutionize the industry

    Evolution along the sequence of S0 Hubble types induced by dry minor mergers. II - Bulge-disk coupling in the photometric relations through merger-induced internal secular evolution

    Get PDF
    Galaxy mergers are considered as questionable mechanisms for the evolution of lenticular galaxies (S0's), on the basis that even minor ones induce structural changes that are difficult to reconcile with the strong bulge-disk coupling observed in the photometric scaling relations of S0's. We check if the evolution induced onto S0's by dry intermediate and minor mergers can reproduce their photometric scaling relations, analysing the bulge-disk decompositions of the merger simulations presented in Eliche-Moral et al. (2012). The mergers induce an evolution in the photometric planes compatible with the data of S0's, even in those ones indicating a strong bulge-disk coupling. The mergers drive the formation of the observed photometric relation in some cases, whereas they induce a slight dispersion compatible with data in others. Therefore, this evolutionary mechanism tends to preserve these scaling relations. In those photometric planes where the morphological types segregate, the mergers always induce evolution towards the region populated by S0's. The structural coupling of the bulge and the disk is preserved or reinforced because the mergers trigger internal secular processes in the primary disk that induce significant bulge growth, even although these models do not induce bars. Intermediate and minor mergers can thus be considered as plausible mechanisms for the evolution of S0's attending to their photometric scaling relations, as they can preserve and even strengthen any pre-existing structural bulge-disk coupling, triggering significant internal secular evolution (even in the absence of bars or dissipational effects). This means that it may be difficult to isolate the effects of pure internal secular evolution from those of the merger-driven one in present-day early-type disks (abridged).Comment: Accepted for publication in Astronomy & Astrophysics, 13 pages, 8 figures. Definitive version after proofs. Added references and corrected typo

    A Study of the Near-Ultraviolet Spectrum of Vega

    Full text link
    UV, optical, and near-IR spectra of Vega have been combined to test our understanding of stellar atmospheric opacities, and to examine the possibility of constraining chemical abundances from low-resolution UV fluxes. We have carried out a detailed analysis assuming Local Thermodynamic Equilibrium (LTE) to identify the most important contributors to the UV continuous opacity: H, H−^{-}, C I, and Si II. Our analysis also assumes that Vega is spherically symmetric and its atmosphere is well described with the plane parallel approximation. Comparing observations and computed fluxes we have been able to discriminate between two different flux scales that have been proposed, the IUE-INES and the HST scales, favoring the latter. The effective temperature and angular diameter derived from the analysis of observed optical and near-UV spectra are in very good agreement with previous determinations based on different techniques. The silicon abundance is poorly constrained by the UV observations of the continuum and strong lines, but the situation is more favorable for carbon and the abundances inferred from the UV continuum and optical absorption lines are in good agreement. Some spectral intervals in the UV spectrum of Vega that the calculations do not reproduce well are likely affected by deviations from LTE, but we conclude that our understanding of UV atmospheric opacities is fairly complete for early A-type stars.Comment: 13 pages, 9 figures, to be published in Ap

    MapReduce-based Solutions for Scalable SPARQL Querying

    Get PDF
    The use of RDF to expose semantic data on the Web has seen a dramatic increase over the last few years. Nowadays, RDF datasets are so big and rconnected that, in fact, classical mono-node solutions present significant scalability problems when trying to manage big semantic data. MapReduce, a standard framework for distributed processing of great quantities of data, is earning a place among the distributed solutions facing RDF scalability issues. In this article, we survey the most important works addressing RDF management and querying through diverse MapReduce approaches, with a focus on their main strategies, optimizations and results

    The HERMES Solar Atlas and the spectroscopic analysis of the seismic solar analogue KIC3241581

    Get PDF
    Solar-analog stars provide an excellent opportunity to study the Sun's evolution, i.e. the changes with time in stellar structure, activity, or rotation for solar-like stars. The unparalleled photometric data from the NASA space telescope Kepler allows us to study and characterise solar-like stars through asteroseismology. We aim to spectroscopically investigate the fundamental parameter and chromospheric activity of solar analogues and twins, based on observations obtained with the HERMES spectrograph and combine them with asteroseismology. Therefore, we need to build a solar atlas for the spectrograph, to provide accurate calibrations of the spectroscopically determined abundances of solar and late type stars observed with this instrument and thus perform differential spectral comparisons. We acquire high-resolution and high signal-to-noise spectroscopy to construct three solar reference spectra by observing the reflected light of Vesta and Victoria asteroids and Europa (100<S/N<450) with the \Hermes spectrograph. We then observe the Kepler solar analog KIC3241581 (S/N~170). We constructed three solar spectrum atlases from 385 to 900 nm obtained with the Hermes spectrograph from observations of two bright asteroids and Europa. A comparison between our solar spectra atlas to the Kurucz and HARPS solar spectrum shows an excellent agreement. KIC3241581 was found to be a long-periodic binary system. The fundamental parameter for the stellar primary component are Teff=5689+/-11K, logg=4.385+/-0.005, [Fe/H]=+0.22+/-0.01, being in agreement with the published global seismic values confirming its status of solar analogue. KIC 3241581 is a metal rich solar analogue with a solar-like activity level in a binary system of unknown period. The chromospheric activity level is compatible to the solar magnetic activity.Comment: 12 pages, 8 figures, accepted for publication in A&

    Ultra-short Period Binaries from the Catalina Surveys

    Get PDF
    We investigate the properties of 367 ultra-short period binary candidates selected from 31,000 sources recently identified from Catalina Surveys data. Based on light curve morphology, along with WISE, SDSS and GALEX multi-colour photometry, we identify two distinct groups of binaries with periods below the 0.22 day contact binary minimum. In contrast to most recent work, we spectroscopically confirm the existence of M-dwarf+M-dwarf contact binary systems. By measuring the radial velocity variations for five of the shortest-period systems, we find examples of rare cool-white dwarf+M-dwarf binaries. Only a few such systems are currently known. Unlike warmer white dwarf systems, their UV flux and their optical colours and spectra are dominated by the M-dwarf companion. We contrast our discoveries with previous photometrically-selected ultra-short period contact binary candidates, and highlight the ongoing need for confirmation using spectra and associated radial velocity measurements. Overall, our analysis increases the number of ultra-short period contact binary candidates by more than an order of magnitude.Comment: 12 pages, 12 figures, accepted Ap

    A high-affinity antibody against the CSP N-terminal domain lacks Plasmodium falciparum inhibitory activity

    Get PDF
    Malaria is a global health concern and research efforts are ongoing to develop a superior vaccine to RTS,S/AS01. To guide immunogen design, we seek a comprehensive understanding of the protective humoral response against Plasmodium falciparum circumsporozoite protein (PfCSP). In contrast to the well-studied responses to the repeat region and the C-terminus, the antibody response against the N-terminal domain of PfCSP (N-CSP) remains obscure. Here, we characterized the molecular recognition and functional efficacy of the N-CSP-specific monoclonal antibody 5D5. The crystal structure at 1.85 Åresolution revealed that 5D5 binds an α-helical epitope in N-CSP with high affinity through extensive shape and charge complementarity, and the unusual utilization of an N-linked glycan. Nevertheless, functional studies indicated low 5D5 binding to live Pf sporozoites, and lack of sporozoite inhibition in vitro and in mosquitoes. Overall, our data on low recognition and inhibition of sporozoites do not support the inclusion of the 5D5 epitope into the next generation of CSP-based vaccines.Summary Statement The Plasmodium falciparum sporozoite surface protein, PfCSP, is an attractive vaccine target, but the antibody response against the CSP N-terminal domain has remained understudied. Here, to guide immunogen design, Thai et al. provide insights into the binding motif and functional efficacy of the N-terminal domain-specific monoclonal antibody, 5D5

    Spectroscopic Observations of Convective Patterns in the Atmospheres of Metal-Poor Stars

    Get PDF
    Convective line asymmetries in the optical spectrum of two metal-poor stars, Gmb1830 and HD140283, are compared to those observed for solar metallicity stars. The line bisectors of the most metal-poor star, the subgiant HD140283, show a significantly larger velocity span that the expectations for a solar-metallicity star of the same spectral type and luminosity class. The enhanced line asymmetries are interpreted as the signature of the lower metal content, and therefore opacity, in the convective photospheric patterns. These findings point out the importance of three-dimensional convective velocity fields in the interpretation of the observed line asymmetries in metal-poor stars, and in particular, urge for caution when deriving isotopic ratios from observed line shapes and shifts using one-dimensional model atmospheres. The mean line bisector of the photospheric atomic lines is compared with those measured for the strong Mg I b1 and b2 features. The upper part of the bisectors are similar, and assuming they overlap, the bottom end of the stronger lines, which are formed higher in the atmosphere, goes much further to the red. This is in agreement with the expected decreasing of the convective blue-shifts in upper atmospheric layers, and compatible with the high velocity redshifts observed in the chromosphere, transition region, and corona of late-type stars.Comment: 27 pages, LaTeX; 10 Figures (14 PostScript files); to be published in The Astrophysical Journa
    • 

    corecore