165 research outputs found

    Novel insights into RNAi off-target effects using C. elegans paralogs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the few years since its discovery, RNAi has turned into a very powerful tool for the study of gene function by allowing post-transcriptional gene silencing. The RNAi mechanism, which is based on the introduction of a double-stranded RNA (dsRNA) trigger whose sequence is similar to that of the targeted messenger RNA (mRNA), is subject to off-target cross-reaction.</p> <p>Results</p> <p>We use a novel strategy based on phenotypic analysis of paralogs and predict that, in <it>Caenorhabditis elegans</it>, off-target effects occur when an mRNA sequence shares more than 95% identity over 40 nucleotides with the dsRNA. Interestingly, our results suggest that the minimum length necessary of a high-similarity stretch between a dsRNA and its target in order to observe an efficient RNAi effect varies from 30 to 50 nucleotides rather than 22 nucleotides, which is the length of siRNAs in <it>C. elegans</it>.</p> <p>Conclusion</p> <p>Our predictive methods would improve the design of dsRNA and ultimately the use of RNAi as a therapeutic tool upon experimental verification.</p

    Towards a method and a guiding tool for conducting process mining projects

    Get PDF
    Due to the increased use of information systems by organizations, information on the execution of processes is recorded. This enables using process mining as a tool for improving process performance. Process mining allows gaining insights regarding actual processes by extracting and processing data from existing systems. Many projects have been conducted for process discovery, conformance checking, etc. Despite of the existence of general methods for data analysis, there’s a lack of specific methods to support process mining projects. Thus, completions of such projects are often dependent on expertise of the analysts. This paper presents a detailed method for conducting process mining projects and a tool for supporting its execution and retaining the outcomes of each step. A case is analysed for evaluating them. Organizations seeking process performance improvement can get benefit from a method that states how process mining techniques can be used in process mining projects

    High Cysteinyl Leukotriene Receptor 1 Expression Correlates with Poor Survival of Uveal Melanoma Patients and Cognate Antagonist Drugs Modulate the Growth, Cancer Secretome, and Metabolism of Uveal Melanoma Cells

    Get PDF
    Simple Summary This research investigates the disease relevance and therapeutic potential of cysteinyl leukotriene receptors in uveal melanoma (UM), a rare eye cancer that often spreads to the liver. Unfortunately, there are no therapies available to stop the spread of UM and patients are often faced with an extremely poor prognosis. We assess whether the cysteinyl leukotriene receptors (CysLT(1) and CysLT(2)) are relevant to the progression of UM. Using UM patient samples, we identified that increased levels of CysLT(1) in tumours is associated with reduced patient survival. Using UM cell lines and zebrafish models, we found that drugs targeting CysLT(1), but not CysLT(2), can alter hallmarks of cancer including cell growth, proliferation, and metabolism. This study is the first to examine the relationship of the CysLT receptors with clinical features of UM. Our data strengthen the importance of CysLT signalling in UM and suggest that antagonism of CysLT(1) may be of therapeutic interest in the disease. Metastatic uveal melanoma (UM) is a rare, but often lethal, form of ocular cancer arising from melanocytes within the uveal tract. UM has a high propensity to spread hematogenously to the liver, with up to 50% of patients developing liver metastases. Unfortunately, once liver metastasis occurs, patient prognosis is extremely poor with as few as 8% of patients surviving beyond two years. There are no standard-of-care therapies available for the treatment of metastatic UM, hence it is a clinical area of urgent unmet need. Here, the clinical relevance and therapeutic potential of cysteinyl leukotriene receptors (CysLT(1) and CysLT(2)) in UM was evaluated. High expression of CYSLTR1 or CYSLTR2 transcripts is significantly associated with poor disease-free survival and poor overall survival in UM patients. Digital pathology analysis identified that high expression of CysLT(1) in primary UM is associated with reduced disease-specific survival (p = 0.012; HR 2.76; 95% CI 1.21-6.3) and overall survival (p = 0.011; HR 1.46; 95% CI 0.67-3.17). High CysLT(1) expression shows a statistically significant (p = 0.041) correlation with ciliary body involvement, a poor prognostic indicator in UM. Small molecule drugs targeting CysLT(1) were vastly superior at exerting anti-cancer phenotypes in UM cell lines and zebrafish xenografts than drugs targeting CysLT(2). Quininib, a selective CysLT(1) antagonist(,) significantly inhibits survival (p < 0.0001), long-term proliferation (p < 0.0001), and oxidative phosphorylation (p < 0.001), but not glycolysis, in primary and metastatic UM cell lines. Quininib exerts opposing effects on the secretion of inflammatory markers in primary versus metastatic UM cell lines. Quininib significantly downregulated IL-2 and IL-6 in Mel285 cells (p < 0.05) but significantly upregulated IL-10, IL-1 beta, IL-2 (p < 0.0001), IL-13, IL-8 (p < 0.001), IL-12p70 and IL-6 (p < 0.05) in OMM2.5 cells. Finally, quininib significantly inhibits tumour growth in orthotopic zebrafish xenograft models of UM. These preclinical data suggest that antagonism of CysLT(1), but not CysLT(2), may be of therapeutic interest in the treatment of UM

    Changes in leaf functional traits with leaf age: when do leaves decrease their photosynthetic capacity in Amazonian trees?

    Get PDF
    Most leaf functional trait studies in the Amazon basin do not consider ontogenetic variations (leaf age), which may influence ecosystem productivity throughout the year. When leaf age is taken into account, it is generally considered discontinuous, and leaves are classified into age categories based on qualitative observations. Here, we quantified age-dependent changes in leaf functional traits such as the maximum carboxylation rate of ribulose-1,5-biphosphate carboxylase/oxygenase (Rubisco) (Vcmax), stomatal control (Cgs%), leaf dry mass per area and leaf macronutrient concentrations for nine naturally growing Amazon tropical trees with variable phenological strategies. Leaf ages were assessed by monthly censuses of branch-level leaf demography; we also performed leaf trait measurements accounting for leaf chronological age based on days elapsed since the first inclusion in the leaf demography, not predetermined age classes. At the tree community scale, a nonlinear relationship between Vcmax and leaf age existed: young, developing leaves showed the lowest mean photosynthetic capacity, increasing to a maximum at 45 days and then decreasing gradually with age in both continuous and categorical age group analyses. Maturation times among species and phenological habits differed substantially, from 8 ± 30 to 238 ± 30 days, and the rate of decline of Vcmax varied from −0.003 to −0.065 μmol CO2 m−2 s−1 day−1. Stomatal control increased significantly in young leaves but remained constant after peaking. Mass-based phosphorus and potassium concentrations displayed negative relationships with leaf age, whereas nitrogen did not vary temporally. Differences in life strategies, leaf nutrient concentrations and phenological types, not the leaf age effect alone, may thus be important factors for understanding observed photosynthesis seasonality in Amazonian forests. Furthermore, assigning leaf age categories in diverse tree communities may not be the recommended method for studying carbon uptake seasonality in the Amazon, since the relationship between Vcmax and leaf age could not be confirmed for all trees

    Transmural Remission Improves Clinical Outcomes Up to 5 years in Crohn's Disease

    Get PDF
    Introduction: Evidence supporting transmural remission (TR) as a long-term treatment target in Crohn's disease (CD) is still unavailable. Less stringent but more reachable targets such as isolated endoscopic (IER) or radiologic remission (IRR) may also be acceptable options in the long-term. Methods: Multicenter retrospective study including 404 CD patients evaluated by magnetic resonance enterography and colonoscopy. Five-year rates of hospitalization, surgery, use of steroids, and treatment escalation were compared between patients with TR, IER, IRR, and no remission (NR). Results: 20.8% of CD patients presented TR, 23.3% IER, 13.6% IRR and 42.3% NR. TR was associated with lower risk of hospitalization (odds-ratio [OR] 0.244 [0.111-0.538], p < 0.001), surgery (OR 0.132 [0.030-0.585], p = 0.008), steroid use (OR 0.283 [0.159-0.505], p < 0.001), and treatment escalation (OR 0.088 [0.044-0.176], p < 0.001) compared to no NR. IRR resulted in lower risk of hospitalization (OR 0.333 [0.143-0.777], p = 0.011) and treatment escalation (OR 0.260 [0.125-0.540], p < 0.001), while IER reduced the risk of steroid use (OR 0.442 [0.262-0.745], p = 0.002) and treatment escalation (OR 0.490 [0.259-0.925], p = 0.028) compared to NR. Conclusions: TR improved clinical outcomes over 5 years of follow-up in CD patients. Distinct but significant benefits were seen with IER and IRR. This suggests that both endoscopic and radiologic remission should be part of the treatment targets of CD.info:eu-repo/semantics/publishedVersio

    Direct evidence for phosphorus limitation on Amazon forest productivity

    Get PDF
    The productivity of rainforests growing on highly weathered tropical soils is expected to be limited by phosphorus availability1. Yet, controlled fertilization experiments have been unable to demonstrate a dominant role for phosphorus in controlling tropical forest net primary productivity. Recent syntheses have demonstrated that responses to nitrogen addition are as large as to phosphorus2, and adaptations to low phosphorus availability appear to enable net primary productivity to be maintained across major soil phosphorus gradients3. Thus, the extent to which phosphorus availability limits tropical forest productivity is highly uncertain. The majority of the Amazonia, however, is characterized by soils that are more depleted in phosphorus than those in which most tropical fertilization experiments have taken place2. Thus, we established a phosphorus, nitrogen and base cation addition experiment in an old growth Amazon rainforest, with a low soil phosphorus content that is representative of approximately 60% of the Amazon basin. Here we show that net primary productivity increased exclusively with phosphorus addition. After 2 years, strong responses were observed in fine root (+29%) and canopy productivity (+19%), but not stem growth. The direct evidence of phosphorus limitation of net primary productivity suggests that phosphorus availability may restrict Amazon forest responses to CO2 fertilization4, with major implications for future carbon sequestration and forest resilience to climate change.The authors acknowledge funding from the UK Natural Environment Research Council (NERC), grant number NE/L007223/1. This is publication 850 in the technical series of the BDFFP. C.A.Q. acknowledges the grants from Brazilian National Council for Scientific and Technological Development (CNPq) CNPq/LBA 68/2013, CNPq/MCTI/FNDCT no. 18/2021 and his productivity grant. C.A.Q., H.F.V.C., F.D.S., I.A., L.F.L., E.O.M. and S.G. acknowledge the AmazonFACE programme for financial support in cooperation with Coordination for the Improvement of Higher Education Personnel (CAPES) and the National Institute of Amazonian Research as part of the grants CAPES-INPA/88887.154643/2017-00 and 88881.154644/2017-01. T.F.D. acknowledges funds from FundacAo de Amparo a Pesquisa do Estado de SAo Paulo (FAPESP), grant 2015/50488-5, and the Partnership for Enhanced Engagement in Research (PEER) programme grant AID-OAA-A-11-00012. L.E.O.C.A. thanks CNPq (314416/2020-0)

    Mechanisms and mechanics of cell competition in epithelia

    Get PDF
    When fast-growing cells are confronted with slow-growing cells in a mosaic tissue, the slow-growing cells are often progressively eliminated by apoptosis through a process known as cell competition. The underlying signalling pathways remain unknown, but recent findings have shown that cell crowding within an epithelium leads to the eviction of cells from the epithelial sheet. This suggests that mechanical forces could contribute to cell elimination during cell competition
    corecore