351 research outputs found

    Give Progesterone a chance

    Get PDF
    There is currently no standard pharmacological treatment for spinal cord injury. Here, we suggest that progesterone, a steroid hormone, may be a promising therapeutical candidate as it is already for traumatic brain injury, where it has reached phase II clinical trials. We rely on previous works showing anti-inflammatory, neuroprotective and promyelinating roles for progesterone after spinal cord injury and in our recent paper, in which we demonstrate that progesterone diminishes lesion, preserves white matter integrity and improves locomotor recovery in a clinically relevant model of spinal cord lesion.Fil: Labombarda, Maria Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentina. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Bioquímica Humana; ArgentinaFil: Garcia Ovejero, Daniel. Hospital Nacional de Paraplejicos; Españ

    Unit-cell design for antenna arrays efficiently matched to uni-travelling-carrier photodiodes

    Get PDF
    International audienceWe present an antenna array with a backing reflector that allows one to obtain efficient matching to integrated sources or loads with low input resistance. In the infinite array limit, it is possible to describe the proposed unit-cell as an equivalent network with closed-form expressions for its different constituents. This analytic approach enables the preliminary design of arrays with improved matching efficiency for optimum power transmission/reception. The proposed solution has enabled an improved matching to a uni-travelling-carrier photodiode with a maximum improvement of 3 dB in the radiated power with respect to a 72-℩ antenna, and featuring a 50% bandwidth

    Self-Assembly of Au-Fe3O4 Hybrid Nanoparticles Using a Sol–Gel Pechini Method

    Get PDF
    The Pechini method has been used as a synthetic route for obtaining self-assembling magnetic and plasmonic nanoparticles in hybrid silica nanostructures. This manuscript evaluates the influence of shaking conditions, reaction time, and pH on the size and morphology of the nanostructures produced. The characterization of the nanomaterials was carried out by transmission electron microscopy (TEM) to evaluate the coating and size of the nanomaterials, Fourier-transform infrared spectroscopy (FT-IR) transmission spectra to evaluate the presence of the different coatings, and thermogravimetric analysis (TGA) curves to determine the amount of coating. The results obtained show that the best conditions to obtain core–satellite nanostructures with homogeneous silica shells and controlled sizes (<200 nm) include the use of slightly alkaline media, the ultrasound activation of silica condensation, and reaction times of around 2 h. These findings represent an important framework to establish a new general approach for the click chemistry assembling of inorganic nanostructures

    CB1 cannabinoid receptor enrichment in the ependymal region of the adult human spinal cord

    Get PDF
    Cannabinoids are involved in the regulation of neural stem cell biology and their receptors are expressed in the neurogenic niches of adult rodents. In the spinal cord of rats and mice, neural stem cells can be found in the ependymal region, surrounding the central canal, but there is evidence that this region is largely different in adult humans: lacks a patent canal and presents perivascular pseudorosettes, typically found in low grade ependymomas. Using Laser Capture Microdissection, Taqman gene expression assays and immunohistochemistry, we have studied the expression of endocannabinoid system components (receptors and enzymes) at the human spinal cord ependymal region. We observe that ependymal region is enriched in CB1 cannabinoid receptor, due to high CB1 expression in GFAP+ astrocytic domains. However, in human spinal cord levels that retain central canal patency we found ependymal cells with high CB1 expression, equivalent to the CB1HIGH cell subpopulation described in rodents. Our results support the existence of ependymal CB1HIGH cells across species, and may encourage further studies on this subpopulation, although only in cases when central canal is patent. In the adult human ependyma, which usually shows central canal absence, CB1 may play a different role by modulating astrocyte functions

    Progesterone reduces secondary damage, preserves white matter and improves locomotor outcome after spinal cord contusion

    Get PDF
    Progesterone is an anti-inflammatory and promyelinating agent after spinal cord injury, but its effectiveness on functional recovery is still controversial. In the current study, we tested the effects of chronic progesterone administration on tissue preservation and functional recovery in a clinically relevant model of spinal cord lesion (thoracic contusion). Using magnetic resonance imaging, we observed that progesterone reduced both volume and rostrocaudal extension of the lesion at 60 days post-injury. In addition, progesterone increased the number of total mature oligodendrocytes, myelin basic protein immunoreactivity, and the number of axonal profiles at the epicenter of the lesion. Further, progesterone treatment significantly improved motor outcome as assessed using the Basso-Bresnahan-Beattie scale for locomotion and CatWalk gait analysis. These data suggest that progesterone could be considered a promising therapeutical candidate for spinal cord injury.Fil: Garcia Ovejero, Daniel. Hospital Nacional de Paraplejicos; EspañaFil: Gonzalez, Susana Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentina. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Bioquímica Humana; ArgentinaFil: Paniagua Torija, Beatriz. Hospital Nacional de Paraplejicos; EspañaFil: Lima, Analia Ethel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); ArgentinaFil: Molina Holgado, Eduardo. Hospital Nacional de Paraplejicos; EspañaFil: de Nicola, Alejandro Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentina. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Bioquímica Humana; ArgentinaFil: Labombarda, Maria Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentina. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Bioquímica Humana; Argentin

    Genetics and Genomics of SOST: functional analysis of variants and genomic regulation in osteoblasts

    Get PDF
    SOST encodes the sclerostin protein, which acts as a key extracellular inhibitor of the canonical Wnt pathway in bone, playing a crucial role in skeletal development and bone homeostasis. The objective of this work was to assess the functionality of two variants previously identified (the rare variant rs570754792 and the missense variant p.Val10Ile) and to investigate the physical interactors of the SOST proximal promoter region in bone cells. Through a promoter luciferase reporter assay we show that the minor allele of rs570754792, a variant located in the extended TATA box motif, displays a significant decrease in promoter activity. Likewise, through western blot studies of extracellular and intracellular sclerostin, we observe a reduced expression of the p.Val10Ile mutant protein. Finally, using a circular chromosome conformation capture assay (4C-seq) in 3 bone cell types (MSC, hFOB, Saos-2), we have detected physical interactions between the SOST proximal promoter and the ECR5 enhancer, several additional enhancers located between EVT4 and MEOX1 and a distant region containing exon 18 of DHX8. In conclusion, SOST presents functional regulatory and missense variants that affect its expression and displays physical contacts with far reaching genomic sequences, which may play a role in its regulation within bone cells

    Genetic analysis in a familial case with high bone mineral density suggests additive effects at two loci

    Full text link
    Osteoporosis is the most common bone disease, characterized by a low bone mineral density (BMD) and increased risk of fracture. At the other end of the BMD spectrum, some individuals present strong, fracture-resistant, bones. Both osteoporosis and high BMD are heritable and their genetic architecture encompasses polygenic inheritance of common variants and some cases of monogenic highly penetrant variants in causal genes. We have investigated the genetics of high BMD in a family segregating this trait in an apparently Mendelian dominant pattern. We searched for rare causal variants by whole-exome sequencing in three affected and three nonaffected family members. Using this approach, we have identified 38 rare coding variants present in the proband and absent in the three individuals with normal BMD. Although we have found four variants shared by the three affected members of the family, we have not been able to relate any of these to the high-BMD phenotype. In contrast, we have identified missense variants in two genes, VAV3 and ADGRE5, each shared by two of out of three affected members, whose loss of function fits with the phenotype of the family. In particular, the proband, a woman displaying the highest BMD (sum Z-score = 7), carries both variants, whereas the other two affected members carry one each. VAV3 encodes a guanine-nucleotide-exchange factor with an important role in osteoclast activation and function. Although no previous cases of VAV3 mutations have been reported in humans, Vav3 knockout (KO) mice display dense bones, similarly to the high-BMD phenotype present in our family. The ADGRE5 gene encodes an adhesion G protein-coupled receptor expressed in osteoclasts whose KO mouse displays increased trabecular bone volume. Combined, these mouse and human data highlight VAV3 and ADGRE5 as novel putative high-BMD genes with additive effects, and potential therapeutic targets for osteoporosis. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research
    • 

    corecore