14,181 research outputs found

    Why are massive O-rich AGB stars in our Galaxy not S-stars?

    Full text link
    We present the main results derived from a chemical analysis carried out on a large sample of galactic O-rich AGB stars using high resolution optical spectroscopy (R~40,000-50,000) with the intention of studying their lithium abundances and/or possible s-process element enrichment. Our chemical analysis shows that some stars are lithium overabundant while others are not. The observed lithium overabundances are interpreted as a clear signature of the activation of the so-called ``Hot Bottom Burning'' (HBB) process in massive galactic O-rich AGB stars, as predicted by the models. However, these stars do not show the zirconium enhancement (taken as a representative for the s-process element enrichment) associated to the third dredge-up phase following thermal pulses. Our results suggest that the more massive O-rich AGB stars in our Galaxy behave differently from those in the Magellanic Clouds, which are both Li- and s-process-rich (S-type stars). Reasons for this unexpected result are discussed. We conclude that metallicity is probably the main responsible for the differences observed and suggest that it may play a more important role than generally assumed in the chemical evolution of AGB stars.Comment: 4 pages, 2 figures, to appear in the proceedings of the conference "Planetary Nebulae as astronomical tools" held in Gdansk, Poland, jun 28/jul 02, 200

    Probing O-enrichment in C-rich dust planetary nebulae

    Get PDF
    The abundance of O in planetary nebulae (PNe) has been historically used as a metallicity indicator of the interstellar medium (ISM) where they originated; e.g., it has been widely used to study metallicity gradients in our Galaxy and beyond. However, clear observational evidence for O self enrichment in low-metallicity Galactic PNe with C-rich dust has been recently reported. Here we report asymptotic giant branch (AGB) nucleosynthesis predictions for the abundances of the CNO elements and helium in the metallicity range Zsun/4 < Z < 2Zsun. Our AGB models, with diffusive overshooting from all the convective borders, predict that O is overproduced in low-Z low-mass (~1-3 Msun) AGB stars and nicely reproduce the recent O overabundances observed in C-rich dust PNe. This confirms that O is not always a good proxy of the original ISM metallicity and another chemical elements such as Cl or Ar should be used instead. The production of oxygen by low-mass stars should be thus considered in galactic-evolution models.Comment: Accepted for publication in MNRAS Letters (5 pages, 1 figure, and 1 table

    Infrared Study of Fullerene Planetary Nebulae

    Full text link
    We present a study of 16 PNe where fullerenes have been detected in their Spitzer spectra. This large sample of objects offers an unique opportunity to test conditions of fullerene formation and survival under different metallicity environments as we are analyzing five sources in our own Galaxy, four in the LMC, and seven in the SMC. Among the 16 PNe under study, we present the first detection of C60 (possibly also C70) fullerenes in the PN M 1-60 as well as of the unusual 6.6, 9.8, and 20 um features (possible planar C24) in the PN K 3-54. Although selection effects in the original samples of PNe observed with Spitzer may play a potentially significant role in the statistics, we find that the detection rate of fullerenes in C-rich PNe increases with decreasing metallicity (5% in the Galaxy, 20% in the LMC, and 44% in the SMC). CLOUDY photoionization modeling matches the observed IR fluxes with central stars that display a rather narrow range in effective temperature (30,000-45,000 K), suggesting a common evolutionary status of the objects and similar fullerene formation conditions. The observed C60 intensity ratios in the Galactic sources confirm our previous finding in the MCs that the fullerene emission is not excited by the UV radiation from the central star. CLOUDY models also show that line- and wind-blanketed model atmospheres can explain many of the observed [NeIII]/[NeII] ratios by photoionization suggesting that possibly the UV radiation from the central star, and not shocks, are triggering the decomposition of the circumstellar dust grains. With the data at hand, we suggest that the most likely explanation for the formation of fullerenes and graphene precursors in PNe is that these molecular species are built from the photo-chemical processing of a carbonaceous compound with a mixture of aromatic and aliphatic structures similar to that of HAC dust.Comment: Accepted for publication in ApJ (43 pages, 11 figures, and 4 tables). Small changes to fit the proof-corrected article to be published in Ap

    Galactic planetary nebulae with precise nebular abundances as a tool to understand the evolution of asymptotic giant branch stars

    Get PDF
    We present nucleosynthesis predictions (HeCNOCl) from asymptotic giant branch (AGB) models, with diffusive overshooting from all the convective borders, in the metallicity range Z/4 < Z < 2Zsun. They are compared to recent precise nebular abundances in a sample of Galactic planetary nebulae (PNe) that is divided among double-dust chemistry (DC) and oxygen-dust chemistry (OC) according to the infrared dust features. Unlike the similar subsample of Galactic carbon-dust chemistry PNe recently analysed by us, here the individual abundance errors, the higher metallicity spread, and the uncertain dust types/subtypes in some PNe do not allow a clear determination of the AGB progenitor masses (and formation epochs) for both PNe samples; the comparison is thus more focussed on a object-by-object basis. The lowest metallicity OC PNe evolve from low-mass (~1 Msun) O-rich AGBs, while the higher metallicity ones (all with uncertain dust classifications) display a chemical pattern similar to the DC PNe. In agreement with recent literature, the DC PNe mostly descend from high-mass (M > 3.5 Msun) solar/supersolar metallicity AGBs that experience hot bottom burning (HBB), but other formation channels in low-mass AGBs like extra mixing, stellar rotation, binary interaction, or He pre-enrichment cannot be disregarded until more accurate C/O ratios would be obtained. Two objects among the DC PNe show the imprint of advanced CNO processing and deep second dredge-up, suggesting progenitors masses close to the limit to evolve as core collapse supernovae (above 6 Msun). Their actual C/O ratio, if confirmed, indicate contamination from the third dredge-up, rejecting the hypothesis that the chemical composition of such high-metallicity massive AGBs is modified exclusively by HBB.Comment: Accepted for publication in MNRAS (11 pages, 3 figures, and 2 tables

    Analysis of the performance of a hybrid CPU/GPU 1D2D coupled model for real flood cases

    Get PDF
    Coupled 1D2D models emerged as an efficient solution for a two-dimensional (2D) representation of the floodplain combined with a fast one-dimensional (1D) schematization of the main channel. At the same time, high-performance computing (HPC) has appeared as an efficient tool for model acceleration. In this work, a previously validated 1D2D Central Processing Unit (CPU) model is combined with an HPC technique for fast and accurate flood simulation. Due to the speed of 1D schemes, a hybrid CPU/GPU model that runs the 1D main channel on CPU and accelerates the 2D floodplain with a Graphics Processing Unit (GPU) is presented. Since the data transfer between sub-domains and devices (CPU/GPU) may be the main potential drawback of this architecture, the test cases are selected to carry out a careful time analysis. The results reveal the speed-up dependency on the 2D mesh, the event to be solved and the 1D discretization of the main channel. Additionally, special attention must be paid to the time step size computation shared between sub-models. In spite of the use of a hybrid CPU/GPU implementation, high speed-ups are accomplished in some cases

    Studying the evolution of AGB stars in the Gaia epoch

    Get PDF
    We present asymptotic giant branch (AGB) models of solar metallicity, to allow the interpretation of observations of Galactic AGB stars, whose distances should be soon available after the first release of the Gaia catalogue. We find an abrupt change in the AGB physical and chemical properties, occurring at the threshold mass to ignite hot bottom burning,i.e. 3.5M⊙3.5M_{\odot}. Stars with mass below 3.5M⊙3.5 M_{\odot} reach the C-star stage and eject into the interstellar medium gas enriched in carbon , nitrogen and 17O^{17}O. The higher mass counterparts evolve at large luminosities, between 3×104L⊙3\times 10^4 L_{\odot} and 105L⊙10^5 L_{\odot}. The mass expelled from the massive AGB stars shows the imprinting of proton-capture nucleosynthesis, with considerable production of nitrogen and sodium and destruction of 12C^{12}C and 18O^{18}O. The comparison with the most recent results from other research groups are discussed, to evaluate the robustness of the present findings. Finally, we compare the models with recent observations of galactic AGB stars, outlining the possibility offered by Gaia to shed new light on the evolution properties of this class of objects.Comment: 21 pages, 11 figure, 3 tables, accepted for publication in MNRAS (2016 July 11

    Clear evidence for the presence of second-generation asymptotic giant branch stars in metal-poor Galactic globular clusters

    Get PDF
    Galactic globular clusters (GCs) are known to host multiple stellar populations: a first generation with a chemical pattern typical of halo field stars and a second generation (SG) enriched in Na and Al and depleted in O and Mg. Both stellar generations are found at different evolutionary stages (e.g., the main-sequence turnoff, the subgiant branch, and the red giant branch). The non detection of SG asymptotic giant branch (AGB) stars in several metal-poor ([Fe/H] < -1) GCs suggests that not all SG stars ascend the AGB phase, and that failed AGB stars may be very common in metal-poor GCs. This observation represents a serious problem for stellar evolution and GC formation/evolution theories. We report fourteen SG-AGB stars in four metal-poor GCs (M 13, M 5, M 3, and M 2) with different observational properties: horizontal branch (HB) morphology, metallicity, and age. By combining the H-band Al abundances obtained by the APOGEE survey with ground-based optical photometry, we identify SG Al-rich AGB stars in these four GCs and show that Al-rich RGB/AGB GC stars should be Na-rich. Our observations provide strong support for present, standard stellar models, i.e., without including a strong mass-loss efficiency, for low-mass HB stars. In fact, current empirical evidence is in agreement with the predicted distribution of FG and and SG stars during the He-burning stages based on these standard stellar models.Comment: Accepted for publication in The Astrophysical Journal Letters (16 pages, 4 figures, and 1 table

    FEM based mathematical modelling of thrust force during drilling of Al7075-T6

    Get PDF
    Like most machining processes, drilling is affected by many parameters such as the tool diameter, the cutting speed and feed. The current research investigates the possibility of developing a finite element modelling based prediction model for the generated thrust force during drilling of Al7075-T6 with solid carbide tools. A total of 27 drilling experiments were carried out in order to examine the interaction between three key parameters and their effect on thrust force. In addition, simulations of the experiments were realized with the use of DEFORM3D((TM))software in order to obtain the necessary numerical data. Finally, a comparison was made between the experimental and the numerical results to verify that reliable modelling is feasible. The mathematical model was acquired with the use of response surface methodology and the verification of the adequacy of the model was performed through an analysis of variance. The majority of the simulations yielded results in agreement with the experimental results at around 95% and the derived model offered an accuracy of 5.9%
    • …
    corecore