329 research outputs found

    Low-Complexity Near-Optimal Decoding for Analog Joint Source Channel Coding Using Space-Filling Curves

    Get PDF
    © 2013 IEEE. This version of the article has been accepted for publication, after peer review. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The Version of Record is available online at: https://doi.org/10.1109/LCOMM.2013.021913.122782[Abstract]: Analog Joint Source-Channel Coding (JSCC) is a communication strategy that does not follow the separation principle of conventional digital systems but approaches the optimal distortion-cost tradeoff over AWGN channels. Conventional Maximum Likelihood (ML) analog JSCC decoding schemes suffer performance degradation at low Channel Signal to Noise Ratio (CSNR) values, while Minimum Mean Square Error (MMSE) decoding presents high complexity. In this letter we propose an alternative two step decoding approach which achieves the near-optimal performance of MMSE decoding at all CSNR values while maintaining a low complexity comparable to that of ML decoding. An additional advantage of the proposed analog JSCC decoding approach is that it can also be used in Multiple Input Multiple Output (MIMO) fading channels.This work has been funded by Xunta de Galicia, Ministerio de EconomĂ­a y Competitividad of Spain, and FEDER funds of the European Union under grants 2012/287, TEC2010-19545-C04-01 and CSD2008-00010. J. G. F.’s work has been funded by NSF awards EECS-0725422 and CIF-0915800.Xunta de Galicia; CN 2012/287United States. National Science Foundation; EECS-0725422United States. National Science Foundation; CIF-091580

    Analog joint source-channel coding over MIMO channels

    Get PDF
    [Abstract]: Analog joint source-channel coding (JSCC) is a communication strategy that does not follow the separation principle of conventional digital systems but has been shown to approach the optimal distortion-cost tradeoff over additive white Gaussian noise channels. In this work, we investigate the feasibility of analog JSCC over multiple-input multiple-output (MIMO) fading channels. Since, due to complexity constraints, directly recovering the analog source information from the MIMO channel output is not possible, we propose the utilization of low-complexity two-stage receivers that separately perform detection and analog JSCC maximum likelihood decoding. We study analog JSCC MIMO receivers that utilize either linear minimum mean square error or decision feedback MIMO detection. Computer experiments show the ability of the proposed analog JSCC receivers to approach the optimal distortion-cost tradeoff both in the low and high channel signal-to-noise ratio regimes. Performance is analyzed over both synthetically computer-generated Rayleigh fading channels and real indoor wireless measured channels.This work has been funded by Xunta de Galicia, MINECO of Spain, and FEDER funds of the EU under grants 2012/287, TEC2010-19545-C04-01, and CSD2008-00010; and by NSF award CIF-0915800.Xunta de Galicia; CN 2012/287United States. National Science Foundation; CIF-091580

    Using LDGM Codes and Sparse Syndromes to Achieve Digital Signatures

    Full text link
    In this paper, we address the problem of achieving efficient code-based digital signatures with small public keys. The solution we propose exploits sparse syndromes and randomly designed low-density generator matrix codes. Based on our evaluations, the proposed scheme is able to outperform existing solutions, permitting to achieve considerable security levels with very small public keys.Comment: 16 pages. The final publication is available at springerlink.co

    Hepatitis B Virus Variants with Multiple Insertions and/or Deletions in the X Open Reading Frame 3 ' End: Common Members of Viral Quasispecies in Chronic Hepatitis B Patients

    Get PDF
    Hepatitis B virus; Insertions; Next-generation sequencingVirus de l'hepatitis B; Insercions; SeqĂŒenciaciĂł de nova generaciĂłVirus de la hepatitis B; Inserciones; SecuenciaciĂłn de prĂłxima generaciĂłnDeletions in the 3â€Č end region of the hepatitis B virus (HBV) X open reading frame (HBX) may affect the core promoter (Cp) and have been frequently associated with hepatocellular carcinoma (HCC). The aim of this study was to investigate the presence of variants with deletions and/or insertions (Indels) in this region in the quasispecies of 50 chronic hepatitis B (CHB) patients without HCC. We identified 103 different Indels in 47 (94%) patients, in a median of 3.4% of their reads (IQR, 1.3–8.4%), and 25% (IQR, 13.1–40.7%) of unique sequences identified in each quasispecies (haplotypes). Of those Indels, 101 (98.1%) caused 44 different altered stop codons, the most commonly observed were at positions 128, 129, 135, and 362 (putative position). Moreover, 39 (37.9%) Indels altered the TATA-like box (TA) sequences of Cp; the most commonly observed caused TA2 + TA3 fusion, creating a new putative canonical TATA box. Four (8%) patients developed negative clinical outcomes after a median follow-up of 9.4 (8.7–12) years. In conclusion, we observed variants with Indels in the HBX 3â€Č end in the vast majority of our CHB patients, some of them encoding alternative versions of HBx with potential functional roles, and/or alterations in the regulation of transcription.This research was funded by Instituto de Salud Carlos III and co-financed by the European Regional Development Fund (ERDF), grant number PI18/01436; PI19/00301; and by the Centro para el Desarrollo TecnolĂłgico Industrial (CDTI) from the Spanish Ministry of Economy and Business, grant number IDI-20200297. The APC was funded by the grant PI18/01436

    Standardized Hepatitis B Virus RNA Quantification in Untreated and Treated Chronic Patients: a Promising Marker of Infection Follow-Up.

    Get PDF
    The measurement and interpretation of HBV DNA and RNA levels in HBV infected patients treated with antiviral therapy supports the objective of HBV disease management. Here, we quantified circulating HBV RNA through a standardized and sensitive assay in follow-up samples from both naive and treated patients as a marker of infection evolution. HBV DNA (HBV DNA for use in Cobas 6800/8800 Automated Roche Molecular Systems), RNA (Roche HBV RNA Investigational Assay for use in the Cobas 6800/8800; Roche), HBeAg and HBsAg (Elycsys HBsAg chemiluminescence immunoassay by Cobas 8000; Roche), and core-related antigen (Lumipulse G chemiluminescence assay; Fujirebio) levels were measured in cohorts of untreated or nucleos(t)ide treated, HBV-infected subjects in an outpatient hospital setting. HBV DNA levels in untreated people were 3.6 log10 higher than corresponding RNA levels and were stable over 5 years of observation. While only five of 52 treated patients had DNA levels below the lower limit of quantification (10 IU/mL) at the end of follow-up, 13 had HBV RNA levels persistently above this limit, including eight with undetectable DNA. In samples with undetectable core-related antigen we observed a median HBsAg titer 2.7-fold higher than in samples with undetectable RNA (adjusted P = 0.012). Detectable HBV RNA with undetectable HBV DNA was a negative predictor of HBsAg decrease to a level ≀100 IU/mL (P = 0.03). In naive patients the difference between HBV DNA and RNA was higher than previously reported. HBV RNA rapidly decreased during treatment. However, in some cases, it was detectable even after years of effective therapy, being a negative predictor of HBsAg decrease. The investigational RNA assay for use on the Cobas 6800/8800 instruments is a sensitive and standardized method that could be applied in general management of HBV infection. IMPORTANCE This study focused on the quantification of circulating HBV RNA by using a standardized and sensitive assay. Thanks to this system we observed a higher difference between circulating HBV DNA and RNA than previously reported. In treated patients, HBV RNA decreased together with DNA, although some patients presented detectable levels even after years of successful antiviral treatment, suggesting a persistent viral transcription. Of note, the detection of viral RNA when HBV DNA is undetectable was a negative predictor of HBsAg decrease to a level ≀100 IU/mL. This assay could be extremely helpful in HBV patients management to study viral transcription and to identify those treated patients that may achieve sustained viral suppression

    Downscaling ECMWF seasonal precipitation forecasts in Europe using the RCA model

    Get PDF
    The operational performance and usefulness of regional climate models at seasonal time scales are assessed by downscaling an ensemble of global seasonal forecasts. The Rossby Centre RCA regional model was applied to downscale a five-member ensemble from the ECMWF System3 global model in the European Atlantic domain for the period 1981–2001. One month lead time global and regional precipitation predictions were compared over Europe—and particularly over Spain—focusing the study in SON (autumn) dry events. A robust tercile-based probabilistic validation approach was applied to compare the forecasts from global and regional models, obtaining significant skill in both cases, but over a wider area for the later. Finally, we also analyse the performance of a mixed ensemble combining both forecasts
    • 

    corecore