13,163 research outputs found

    Symplectic gauge fields and dark matter

    Get PDF
    The dynamics of symplectic gauge fields provides a consistent framework for fundamental interactions based on spin three gauge fields. One remarkable property is that symplectic gauge fields only have minimal couplings with gravitational fields and not with any other field of the Standard Model. Interactions with ordinary matter and radiation can only arise from radiative corrections. In spite of the gauge nature of symplectic fields they acquire a mass by the Coleman-Weinberg mechanism which generates Higgs-like mass terms where the gravitational field is playing the role of a Higgs field. Massive symplectic gauge fields weakly interacting with ordinary matter are natural candidates for the dark matter component of the Universe.Comment: 16 page

    Casimir Effect and Global Theory of Boundary Conditions

    Full text link
    The consistency of quantum field theories defined on domains with external borders imposes very restrictive constraints on the type of boundary conditions that the fields can satisfy. We analyse the global geometrical and topological properties of the space of all possible boundary conditions for scalar quantum field theories. The variation of the Casimir energy under the change of boundary conditions reveals the existence of singularities generically associated to boundary conditions which either involve topology changes of the underlying physical space or edge states with unbounded below classical energy. The effect can be understood in terms of a new type of Maslov index associated to the non-trivial topology of the space of boundary conditions. We also analyze the global aspects of the renormalization group flow, T-duality and the conformal invariance of the corresponding fixed points.Comment: 11 page

    Non-analyticities in three-dimensional gauge theories

    Full text link
    Quantum fluctuations generate in three-dimensional gauge theories not only radiative corrections to the Chern-Simons coupling but also non-analytic terms in the effective action. We review the role of those terms in gauge theories with massless fermions and Chern-Simons theories. The explicit form of non-analytic terms turns out to be dependent on the regularization scheme and in consequence the very existence of phenomena like parity and framing anomalies becomes regularization dependent. In particular we find regularization regimes where both anomalies are absent. Due to the presence of non-analytic terms the effective action becomes not only discontinuous but also singular for some background gauge fields which include sphalerons. The appearence of this type of singularities is linked to the existence of nodal configurations in physical states and tunneling suppression at some classical field configurations. In the topological field theory the number of physical states may also become regularization dependent. Another consequence of the peculiar behaviour of three-dimensional theories under parity odd regularizations is the existence of a simple mechanism of generation of a mass gap in pure Yang-Mills theory by a suitable choice of regularization scheme. The generic value of this mass does agree with the values obtained in Hamiltonian and numerical analysis. Finally, the existence of different regularization regimes unveils the difficulties of establishing a Zamolodchikov c-theorem for three-dimensional field theories in terms of the induced gravitational Chern-Simons couplings.Comment: 21 pages; Contribution to Ian Kogan Memorial Collection, ``From Fields to Strings: Circumnavigating Theoretical Physics'

    Simultaneous analysis of elastic scattering and transfer/breakup channels for the 6He+208Pb reaction at energies near the Coulomb barrier

    Get PDF
    The elastic and alpha-production channels for the 6He+208Pb reaction are investigated at energies around the Coulomb barrier (E_{lab}=14, 16, 18, 22, and 27 MeV). The effect of the two-neutron transfer channels on the elastic scattering has been studied within the Coupled-Reaction-Channels (CRC) method. We find that the explicit inclusion of these channels allows a simultaneous description of the elastic data and the inclusive alpha cross sections at backward angles. Three-body Continuum-Discretized Coupled-Channels (CDCC) calculations are found to reproduce the elastic data, but not the transfer/breakup data. The trivially-equivalent local polarization potential (TELP) derived from the CRC and CDCC calculations are found to explain the features found in previous phenomenological optical model calculations for this system.Comment: 7 pages, 6 figures (replaced with updated version

    Impact of global warming on ENSO phase change

    Get PDF
    We compare the physical mechanisms involved in the generation and decay of ENSO events in a control (present day conditions) and Scenario (Is92a, IPCC 1996) simulations performed with the coupled ocean-atmosphere GCM ECHAM4-OPYC3. A clustering technique which objectively discriminates common features in the evolution of the Tropical Pacific Heat Content anomalies leading to the peak of ENSO events allows us to group into a few classes the ENSO events occurring in 240 years of data in the control and scenario runs. In both simulations, the composites of the groups show differences in the generation and development of ENSO. We present the changes in the statistics of the groups and explore the possible mechanisms involved
    corecore